Measurement Error in Dynamic Models

  • John P. BuonaccorsiEmail author
Conference paper
Part of the Lecture Notes in Statistics book series (LNS, volume 211)


Many time series contain measurement (often sampling) error and the problem of assessing the impacts of such errors and accounting for them has been receiving increasing attention of late. This paper provides a survey of this problem with an emphasis on estimating the coefficients of the underlying dynamic model, primarily in the context of fitting linear and nonlinear autoregressive models. An overview is provided of the biases induced by ignoring the measurement error and of methods that have been proposed to correct for it, and remaining inferential challenges are outlined.


Autoregressive models Bayesian bootstrapping Maximum likelihood Pseudo-maximum likelihood Ricker model Simex State space models Time series Yule-Walker 



I wish to express my appreciation to Brajendra Sutradhar for organizing the International Symposium in Statistics on Longitudinal Data Analysis and for serving as editor for the written contributions to this volume. I would also like to thank the members of the audience at the conference for helpful feedback and particularly thank the two referees whose comments and corrections helped improve the initial draft of this paper. Portions of this work grew out of earlier joint work with John Staudenmayer, which was supported by NSF-DMS-0306227, and with David Resendes. I am grateful to David for allowing the use of some results here from his dissertation. This paper also grew out of a seminar presented at the Center for Ecological and Evolutionary Synthesis (CEES), at the University of Oslo, in spring of 2010. I am very grateful to Nils Stenseth and CEES for support during my stay there.


  1. Aigner, D., Hsiao, C., Kapteyn, A., Wansbeek, T.: Latent variable models in econometrics. In: Griliches, Z., Intriligator, M.D. (eds.) Handbook of Econometrics, pp. 1321–1393. Elsevier, Amsterdam (1984)Google Scholar
  2. Barker, D., Sibly, R.M.: The effects of environmental perturbation and measurement error on estimates of the shape parameter in the theta-logistic model of population regulation. Ecol. Model. 219, 170–177 (2008)CrossRefGoogle Scholar
  3. Bell, W.R., Wilcox, D.W.: The effect of sampling error on the time series behavior of consumption data. J. Econometrics. 55, 235–265 (1993)CrossRefGoogle Scholar
  4. Berliner L.M.: Likelihood and Bayesian prediction of chaotic systems. J. Am. Stat. Assoc. 86, 938–952 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bolker, B.: Ecological Models and Data in R. Princeton University Press, Princeton, NJ (2008)zbMATHGoogle Scholar
  6. Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis, Forecasting and Control, 3rd edn. Prentice Hall, Englewood Cliffs, NJ (1994)zbMATHGoogle Scholar
  7. Brockwell, P., Davis, R.: Introduction to Time Series and Forecasting. Springer, New York (2002)zbMATHCrossRefGoogle Scholar
  8. Buonaccorsi, J.P.: Measurement Error, Models, Methods, and Applications. Chapman and Hall, London (2010)zbMATHCrossRefGoogle Scholar
  9. Buonaccorsi, J.P., Staudenmayer, J., Carreras, M.: Modeling observation error and its effects in a random walk/extinction model. Theor. Popul. Biol. 70, 322–335 (2006)zbMATHCrossRefGoogle Scholar
  10. Buonaccorsi J,P., Staudenmayer, J.: Statistical methods to correct for observation error in a density-independent population model. Ecol. Monogr. 79, 299–324 (2009)Google Scholar
  11. Buonaccorsi, J.P., Staudenmayer, J.: Measurement error in linear autoregressive models II: further results and inferences. Working Paper, University of Massachusetts (2012)Google Scholar
  12. Burr, T., Chowell, G.: Observation and model error effects on parameter estimates in susceptible-infected-recovered epidemic model. Far East J. Theor. Stat. 19, 163–183 (2006)MathSciNetzbMATHGoogle Scholar
  13. Calder, C., Lavine, M., Muller, P., Clark, J.: Incorporating multiple sources of stochasticity into dynamic population models. Ecology 84, 1395–1402 (2003)CrossRefGoogle Scholar
  14. Carroll, R.J., Stefanski, L.A., Ruppert, D., Crainiceanu C.M.: Measurement Error in Nonlinear Models, 2nd edn. Chapman and Hall, London (2006)zbMATHCrossRefGoogle Scholar
  15. Chanda, K.C.: Asymptotic properties of estimators for autoregressive models with errors in variables. Ann. Stat. 24, 423–430 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  16. Cheang, W., Reinsel, G.C.: Bias reduction of autoregressive estimates in time series regression model through restricted maximum likelihood. J. Am. Stat. Assoc. 95, 1173–1184 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  17. Clark, J.S., Bjornstad, O.N.: Population time series, process variability, observation errors, missing values, lags, and hidden states. Ecology. 85, 3140–3150 (2004)CrossRefGoogle Scholar
  18. Dennis, B., Ponciano, J., Lele, S., Taper, M., Staples, D.: Estimating density dependence, process noise, and observation error. Ecol. Monogr. 76, 323–341 (2006)CrossRefGoogle Scholar
  19. Dennis, B., Ponciano, J.M., Taper, M.L.: Replicated sampling increases efficiency in monitoring biological populations. Ecology 91, 610–620 (2010)CrossRefGoogle Scholar
  20. De Valpine, P.: Review of methods for fitting time-series models with process and observation error and likelihood calculations for nonlinear non-Gaussian state-space models. Bull. Mar. Sci. 70, 455–471 (2002)Google Scholar
  21. De Valpine, P.: Monte-Carlo state-space likelihoods by weighted posterior kernel density estimation. J. Am. Stat. Assoc. 99, 523–536 (2004)zbMATHCrossRefGoogle Scholar
  22. De Valpine, P., Hastings, A.: Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76 (2002)CrossRefGoogle Scholar
  23. De Valpine, P., Hilborn, R.: State-space likelihoods for nonlinear fisheries time series. Can. J. Fish. Aquat. Sci. 62, 1937–1952 (2005)CrossRefGoogle Scholar
  24. Ellner, S., Yodit, S., Smith, R.: Fitting population dynamic models to time-series by gradient matching. Ecology 83, 2256–2270 (2002)CrossRefGoogle Scholar
  25. Feder, M.: Time series analysis of repeated surveys: the state-space approach. Stat. Neerl. 55, 182–199 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  26. Harvey, A.C.: Forecasting, Structural Time Series Models, and the Kalman Filter. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  27. Fuller, W.: Time Series Analysis. Wiley, New York (1996)Google Scholar
  28. Hovestadt, T., Nowicki, P.: Process and measurement errors of population size, their mutual effects on precision and bias of estimates for demographic parameters. Biodivers. Conserv. 17, 3417–3429 (2008)CrossRefGoogle Scholar
  29. Ives, A.R., Dennis, B., Cottingham, K.L., Carpenter, S.R.: Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003)CrossRefGoogle Scholar
  30. Ives, A.R, Abbott, K., Ziebarth, N.: Analysis of ecological time series with ARMA(p,q) models. Ecololgy 91, 858–871 (2010)CrossRefGoogle Scholar
  31. Jungbacker, B., Koopman, S.J.: Monte Carlo estimation for nonlinear non-Gaussian state space models. Biometrika 94, 827–839 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  32. Knape, J.: Estimability of density dependence in models of time series data. Ecology 89, 2994–3000 (2008)CrossRefGoogle Scholar
  33. Knape, J., Jonzén, N., Skold, M.: Observation distributions for state space models of population survey data. J. Anim. Ecol. 80, 1269–1277 (2011)CrossRefGoogle Scholar
  34. Koons, B.K., Foutz, R.V.: Estimating moving average parameters in the presence of measurement error. Comm. Stat. 19, 3179–3187 (1990)MathSciNetCrossRefGoogle Scholar
  35. Lee, J.H., Shin, D.W.: Maximum likelihood estimation for ARMA models in the presence of ARMA errors. Comm. Stat. Theor. Meth. 26, 1057–1072 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  36. Lele, S.R.: Sampling variability and estimates of density dependence, a composite-likelihood approach. Ecology 87, 189–202 (2006)CrossRefGoogle Scholar
  37. Lele, S.R., Dennis, B., Lutscher, F.: Data cloning, easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. Ecol. Lett. 10, 551–563 (2007)CrossRefGoogle Scholar
  38. Lillegard, M., Engen, S., Saether, B.E., Grotan, V., Drever, M.: Estimation of population parameters from aerial counts of North American mallards: a cautionary tale. Ecol. Appl. 18, 197–207 (2008)CrossRefGoogle Scholar
  39. Mallick, T., Sutradhar, B.: GQL versus conditional GQL inferences for non-stationary time series of counts with overdispersion. J. Time Anal. 29, 402–420 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  40. Miazaki, E.S., Dorea, C.C.Y.: Estimation of the parameters of a time series subject to the error of rotation sampling. Commun. Stat. A - Theor. Meth. 22, 805–825 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  41. McCulloch, C., Searle, S., Neuhaus, J.: Generalized, Linear, and Mixed Models, 2nd edn. Wiley, New York (2008)zbMATHGoogle Scholar
  42. Morris, W.F., Doak, D.F.: Quantitative Conservation Biology: Theory and Practice of Population Variability Analysis. Sinauer Associates, Sunderland, MA (2002)Google Scholar
  43. Pagano, M.: Estimation of models of autoregressive signal plus white noise. Ann. Stat. 2, 99–108 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  44. Parke, W.: Pseudo maximum likelihood estimation: the asymptotic distribution. Ann. Stat. 14, 355–357 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  45. Pfeffermann, D., Feder, M., Signorelli, D.: Estimation of autocorrelations of survey errors with application to trend estimation in small areas. J. Bus. Econ. Stat. 16, 339–348 (1998)MathSciNetGoogle Scholar
  46. Ponciano, J., Taper, M., Dennis, B., Lele, S.: Hierarchical models in ecology, confidence intervals hypothesis testing, and model selection using data cloning. Ecology 90, 356–362 (2009)CrossRefGoogle Scholar
  47. Resendes, D.: Statistical methods for nonlinear dynamic models with measurement error using the Ricker model. Ph.D. thesis, University of Massachusetts, Amherst (2011)Google Scholar
  48. Sakai, H., Soeda, T., Hidekatsu, T.: On the relation between fitting autoregression and periodogram with applications. Ann. Stat. 7, 96–107 (1979)zbMATHCrossRefGoogle Scholar
  49. Saether, B., Lilligard, M., Grotan, V., Drever, M., Engen, S., Nudds, T., Podruzny, K.: Geographical gradients in the population dynamics of North American prairie ducks. J. Anim. Ecol. 77, 869–882 (2008)CrossRefGoogle Scholar
  50. Schmid, C.H., Segal, M.R., Rosner, B.: Incorporating measurement error in the estimation of autoregressive models for longitudinal data. J. Stat. Plann. Infer. 42, 1–18 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  51. Solow, A.R.: On fitting a population model in the presence of observation error. Ecology 79, 1463–1466 (1998)CrossRefGoogle Scholar
  52. Solow, A.R.: Observation error and the detection of delayed density dependence. Ecology 82, 3263–3264 (2001)CrossRefGoogle Scholar
  53. Staudenmayer, J., Buonaccorsi, J.P.: Measurement error in linear autoregressive models. J. Am. Stat. Assoc. 100, 841–852 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  54. Stefanski, L.: The effects of measurement error on parameter estimation. Biometrika 72, 583–592 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  55. Stefanski, L., Cook, J.: Simulation-extrapolation: the measurement error jackknife. J. Am. Stat. Assoc. 90, 1247–1256 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  56. Stenseth, N.C., Viljugrein, H., Saitoh, T., Hansen, T.F., Kittilsen, M.O., Bolviken, E., Glockner, F.: Seasonality, density dependence, and population cycles in Hokkaido voles. Proc. Natl. Acad. Sci. USA. 100, 11478–11483 (2003)CrossRefGoogle Scholar
  57. Tripodis, Y., Buonaccorsi, J.P.: Prediction and forecasting in linear models with measurement error and unknown parameters. J. Stat. Plann. Infer. 139, 4039–4050 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  58. Viljugrein, H., Stenseth, N.C., Smith, G.W., Steinbakk, G.H.: Density dependence in North American ducks. Ecology 86, 245–254 (2005)CrossRefGoogle Scholar
  59. Walker, A.M.: Some consequences of superimposed error in time series analysis. Biometrika 47, 33–43 (1960)MathSciNetzbMATHGoogle Scholar
  60. Wang, G.: On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models. Ecol. Model. 20, 521–528 (2007)CrossRefGoogle Scholar
  61. Wang, G., Hobbs, N.T., Boone, R.B., Illius, A.W., Gordon, I.J., Gross, J.E., Hamlin, K.L.: Spatial and temporal variability modify density dependence in populations of large herbivores. Ecology 87(1), 95–102 (2006)CrossRefGoogle Scholar
  62. Williams, C.K., Ives, A.R., Applegate, R.D.: Population dynamics across geographical ranges, time-series analyses of three small game species. Ecology 84, 2654–2667 (2003)CrossRefGoogle Scholar
  63. Wong, W-K., Miller, R.B.: Repeated time series analysis of ARIMA-noise models. J. Bus. Econ. Stat. 8, 243–250 (1990)Google Scholar
  64. Wong, W-K., Miller, R.B., Shrestha, K.: Maximum likelihood estimation of ARMA models with error processes for replicated observations. J. Appl. Stat. Sci. 10, 287–297 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University of MassachusettsAmherstUSA

Personalised recommendations