Skip to main content

A New Technique for Estimating Population Distribution of Growth Curve Parameters with Longitudinal and Cross-sectional Data

  • Conference paper
  • First Online:
Advances in Growth Curve Models

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 46))

Abstract

In this paper, we present a new approach for estimating the population distribution of biological parameters related to individual growth. The most attractive feature of the proposed method is that, while some amount of longitudinal data is required, information contained in sparse longitudinal as well as completely cross-sectional data can also be harnessed. Although the method is not Bayesian, it can be implemented through recursions based on Gibb’s sampling. Computer simulations in the special case of the Preece–Baines growth model show that inclusion of some cross-sectional data indeed reduces the mean squared errors of the estimators. The method is then used to compare the population distribution of human growth parameters among the male and female subjects of a study conducted some years ago by the Indian Statistical Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, J. (2007). Bayesian computation with R. New York: Springer.

    Book  MATH  Google Scholar 

  • Bates, D. M., & Watts, D. G. (2007). Nonlinear regression analysis and its applications. New York: Wiley.

    MATH  Google Scholar 

  • Carlin, B. P., & Louis, T. A. (2000). Bayes and empirical Bayes methods for data analysis. Boca Raton: Chapman and Hall.

    Book  MATH  Google Scholar 

  • Cnaan, A., Laird, N. M., & Slasor, P. (1997). Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Statistics in Medicine, 16, 2349–2380.

    Article  Google Scholar 

  • Das, S. R., Mukherjee, D. P., Bose, L., & Das, A. (1985). Mixed longitudinal growth data for 22 measures: The Sarsuna Barisha series. Calcutta: Anthropological Survey of India.

    Google Scholar 

  • Dasgupta, P., & Hauspie, R. (2001). Perspectives in human growth, development and maturation. Dordrecht, The Netherlands: Kluwer.

    Book  Google Scholar 

  • Diggle, P., Heagerty, P., Liang, K. -Y., & Zeger, S. L. (2002). Analysis of longitudinal data. Oxford: Oxford University Press.

    Google Scholar 

  • Donnet, S., Foulley, J. L., & Samson, A. (2010). A Bayesian analysis of growth curves using mixed models defined by stochastic differential equations. Biometrics, 66, 733–741.

    Article  MathSciNet  MATH  Google Scholar 

  • Duncan, T. E., Duncan, S. C., Strycker, L. A., Li, F., & Alpert, A. (2006). An introduction to latent variable growth curve modeling: Concepts, issues and applications. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Falkner, F., & Tanner, J. M. (1986). Human growth: A comprehensive treatise (Vol. 3, 2nd ed.). New York: Plenum Press.

    Google Scholar 

  • Hauspie, R. C., Cameron, N., & Molinari, L. (2004). Methods in human growth research. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Huggins, R. M., & Loesch, D. Z. (1998). On the analysis of mixed longitudinal growth data. Biometrics, 54, 583–595.

    Article  MATH  Google Scholar 

  • Laird, N. M., & Ware, J. H. (1982). Random effects models for longitudinal data: An overview of recent results. Biometrics, 38, 963–974.

    Article  MATH  Google Scholar 

  • McLachlan, G., & Krishnan, T. (1997). The EM algorithm and extensions. New York: Wiley.

    MATH  Google Scholar 

  • Potthoff, F., & Roy, S. N. (1964). A generalized multivariate analysis of variance model useful specially for growth curve problems. Biometrika, 51, 313–326.

    MathSciNet  MATH  Google Scholar 

  • Preece, M. A., & Baines, M. J. (1978). A new family of mathematical models describing the human growth curve. Annals of Human Biology, 5, 1–24.

    Article  Google Scholar 

  • Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika, 52, 447–458.

    MathSciNet  MATH  Google Scholar 

  • Verbeke, G., Spiessen, B., & Lesaffre, E. (2001). Conditional linear mixed models. The American Statistician, 55, 25–34.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Salehabadi, S.M., Sengupta, D. (2013). A New Technique for Estimating Population Distribution of Growth Curve Parameters with Longitudinal and Cross-sectional Data. In: Dasgupta, R. (eds) Advances in Growth Curve Models. Springer Proceedings in Mathematics & Statistics, vol 46. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6862-2_9

Download citation

Publish with us

Policies and ethics