DSP Instruction Set Simulation

  • Florian BrandnerEmail author
  • Nigel Horspool
  • Andreas Krall


An instruction set simulator is an important tool for system architects and for software developers. However, when implementing a simulator, there are many choices which can be made and that have an effect on the speed and the accuracy of the simulation. They are especially relevant to DSP simulation. This chapter explains the different strategies for implementing a simulator.


Virtual Machine Basic Block Design Space Exploration Java Virtual Machine Machine Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Almer, O., Böhm, I., von Koch, T.J.K.E., Franke, B., Kyle, S.C., Seeker, V., Thompson, C., Topham, N.P.: Scalable multi-core simulation using parallel dynamic binary translation. In: International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, ICSAMOS ’11, pp. 190–199. IEEE (2011)Google Scholar
  2. 2.
    August, D., Chang, J., Girbal, S., Gracia-Perez, D., Mouchard, G., Penry, D.A., Temam, O., Vachharajani, N.: UNISIM: An open simulation environment and library for complex architecture design and collaborative development. IEEE Computer Architecture Letters 6(2), 45–48 (2007)CrossRefGoogle Scholar
  3. 3.
    Austin, T., Larson, E., Ernst, D.: SimpleScalar: An infrastructure for computer system modeling. Computer 35(2), 59–67 (2002)CrossRefGoogle Scholar
  4. 4.
    Azevedo, R., Rigo, S., Bartholomeu, M., Araujo, G., Araujo, C., Barros, E.: The ArchC architecture description language and tools. Int. J. Parallel Program. 33(5), 453–484 (2005). DOI Google Scholar
  5. 5.
    Bartholomeu, M., Azevedo, R., Rigo, S., Araujo, G.: Optimizations for compiled simulation using instruction type information. In: Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2004), pp. 74–81 (2004). DOI
  6. 6.
    Bell, J.R.: Threaded code. Commun. ACM 16(6), 370–372 (1973). DOI
  7. 7.
    Bermudo, N., Horspool, N., Krall, A.: Control flow graph reconstruction for reverse compilation of assembly language programs with delayed instructions. In: SCAM’05: Proceedings of the Fifth International Workshop on Source Code Analysis and Manipulation, pp. 107–116 (2005)Google Scholar
  8. 8.
    Böhm, I., von Koch, T.J.K.E., Kyle, S.C., Franke, B., Topham, N.: Generalized just-in-time trace compilation using a parallel task farm in a dynamic binary translator. ACM SIGPLAN Notices 46(6), 74–85 (2011). DOI
  9. 9.
    Brandner, F.: Precise simulation of interrupts using a rollback mechanism. In: SCOPES ’09: Proceedings of the 12th International Workshop on Software and Compilers for Embedded Systems, pp. 71–80 (2009)Google Scholar
  10. 10.
    Brandner, F., Fellnhofer, A., Krall, A., Riegler, D.: Fast and accurate simulation using the LLVM compiler framework. In: RAPIDO ’09: 1st Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools (2009)Google Scholar
  11. 11.
    Burtscher, M., Ganusov, I.: Automatic synthesis of high-speed processor simulators. In: MICRO 37: Proceedings of the 37th annual IEEE/ACM International Symposium on Microarchitecture, pp. 55–66 (2004). DOI
  12. 12.
    Chiou, D., Sanjeliwala, H., Sunwoo, D., Xu, J.Z., Patil, N.: FPGA-based fast, cycle-accurate, full-system simulators. In: WARFP’06: Proceedings of the second Workshop on Architecture Research using FPGA Platforms (2006)Google Scholar
  13. 13.
    Chiou, D., Sunwoo, D., Kim, J., Patil, N., Reinhart, W.H., Johnson, D.E., Xu, Z.: The FAST methodology for high-speed SoC/computer simulation. In: ICCAD ’07: Proceedings of the 2007 IEEE/ACM International Conference on Computer-Aided Design, pp. 295–302 (2007)Google Scholar
  14. 14.
    Chiou, D., Sunwoo, D., Kim, J., Patil, N.A., Reinhart, W., Johnson, D.E., Keefe, J., Angepat, H.: FPGA-accelerated simulation technologies (FAST): Fast, full-system, cycle-accurate simulators. In: MICRO ’07: Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 249–261 (2007). DOI
  15. 15.
    Chung, E.S., Hoe, J.C., Falsafi, B.: ProtoFlex: Co-simulation for component-wise FPGA emulator development. In: WARFP ’06: In Proceedings of the 2nd Workshop on Architecture Research using FPGA Platforms (2006)Google Scholar
  16. 16.
    Chung, E.S., Nurvitadhi, E., Hoe, J.C., Falsafi, B., Mai, K.: A complexity-effective architecture for accelerating full-system multiprocessor simulations using FPGAs. In: FPGA ’08: Proceedings of the 16th International ACM/SIGDA Symposium on Field Programmable Gate Arrays, pp. 77–86 (2008). DOI
  17. 17.
    Chung, E.S., Papamichael, M.K., Nurvitadhi, E., Hoe, J.C., Mai, K., Falsafi, B.: ProtoFlex: Towards scalable, full-system multiprocessor simulations using FPGAs. ACM Transactions on Reconfigurable Technology and Systems (TRETS 2(2), 1–32 (2009)Google Scholar
  18. 18.
    Cmelik, B., Keppel, D.: Shade: A fast instruction-set simulator for execution profiling. In: SIGMETRICS ’94: Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pp. 128–137 (1994)Google Scholar
  19. 19.
    Cofer, R.C., Harding, B.: Rapid System Prototyping with FPGAs: Accelerating the Design Process. Newnes (2005)Google Scholar
  20. 20.
    Dehnert, J.C., Grant, B.K., Banning, J.P., Johnson, R., Kistler, T., Klaiber, A., Mattson, J.: The Transmeta Code MorphingTM software: Using speculation, recovery, and adaptive retranslation to address real-life challenges. In: CGO ’03: Proceedings of the International Symposium on Code Generation and Optimization, pp. 15–24 (2003)Google Scholar
  21. 21.
    Ebcioğlu, K., Altman, E., Gschwind, M., Sathaye, S.: Dynamic binary translation and optimization. IEEE Transactions on Computers 50(6), 529–548 (2001)CrossRefGoogle Scholar
  22. 22.
    Ebcioğlu, K., Altman, E.R.: DAISY: Dynamic compilation for 100% architectural compatibility. In: ISCA ’97: Proceedings of the 24th International Symposium on Computer Architecture, pp. 26–37 (1997)Google Scholar
  23. 23.
    Ebcioğlu, K., Altman, E.R., Gschwind, M., Sathaye, S.: Optimizations and oracle parallelism with dynamic translation. In: MICRO 32: Proceedings of the 32nd annual ACM/IEEE International Symposium on Microarchitecture, pp. 284–295 (1999)Google Scholar
  24. 24.
    Emer, J., Ahuja, P., Borch, E., Klauser, A., Luk, C.K., Manne, S., Mukherjee, S.S., Patil, H., Wallace, S., Binkert, N., Espasa, R., Juan, T.: Asim: A performance model framework. Computer 35(2), 68–76 (2002). DOI Google Scholar
  25. 25.
    Errico, J.D., Qin, W.: Constructing portable compiled instruction-set simulators - an ADL-driven approach. In: DATE ’06: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 112–117 (2006)Google Scholar
  26. 26.
    Farfeleder, S., Krall, A., Horspool, N.: Ultra fast cycle-accurate compiled emulation of inorder pipelined architectures. EUROMICRO Journal of Systems Architecture 53(8), 501–510 (2007)CrossRefGoogle Scholar
  27. 27.
    Fauth, A., Praet, J.V., Freericks, M.: Describing instruction set processors using nML. In: EDTC ’95: Proceedings of the 1995 European Conference on Design and Test, pp. 503–507 (1995)Google Scholar
  28. 28.
    Fytraki, S., Pnevmatikatos, D.: ReSim, a trace-driven, reconfigurable ILP processor simulator. In: DATE ’09: Proceedings of Design, Automation and Test in Europe 2009 (2009)Google Scholar
  29. 29.
    Gao, L., Kraemer, S., Leupers, R., Ascheid, G., Meyr, H.: A fast and generic hybrid simulation approach using C virtual machine. In: CASES ’07: Proceedings of the 2007 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pp. 3–12 (2007)Google Scholar
  30. 30.
    Goossens, G., Lanneer, D., Geurts, W., Praet, J.V.: Design of ASIPs in multi-processor SoCs using the Chess/Checkers retargetable tool suite. In: International Symposium on System-on-Chip, pp. 1–4 (2006). DOI  10.1109/ISSOC.2006.321968
  31. 31.
    Gschwind, M., Altman, E.: Optimization and precise exceptions in dynamic compilation. ACM SIGARCH Computer Architecture News 29(1), 66–74 (2001)CrossRefGoogle Scholar
  32. 32.
    Gschwind, M., Altman, E.R., Sathaye, S., Ledak, P., Appenzeller, D.: Dynamic and transparent binary translation. Computer 33(3), 54–59 (2000). DOI Google Scholar
  33. 33.
    Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., Nicolau, A.: EXPRESSION: A language for architecture exploration through compiler/simulator retargetability. In: DATE ’99: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 485–490 (1999). DOI
  34. 34.
    Horspool, R.N., Marovac, N.: An approach to the problem of detranslation of computer programs. Comput. J. 23(3), 223–229 (1980)CrossRefGoogle Scholar
  35. 35.
    Ienne, P., Leupers, R.: Customizable Embedded Processors: Design Technologies and Applications (Systems on Silicon). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2006)Google Scholar
  36. 36.
    Jones, D., Topham, N.P.: High speed CPU simulation using LTU dynamic binary translation. In: HiPEAC’09: Proceedings of the 4th International Conference on High Performance Embedded Architectures and Compilers, pp. 50–64 (2009)Google Scholar
  37. 37.
    Klint, P.: Interpretation techniques. Software: Practice and Experience 11(9), 963 – 973 (1981)CrossRefGoogle Scholar
  38. 38.
    Krall, A., Farfeleder, S., Horspool, N.: Ultra fast cycle-accurate compiled emulation of inorder pipelined architectures. In: SAMOS ’05: Proceedings of the International Workshop on Systems, Architectures, Modeling, and Simulation, LNCS 3553, pp. 222–231 (2005)Google Scholar
  39. 39.
    Kudlugi, M., Hassoun, S., Selvidge, C., Pryor, D.: A transaction-based unified simulation/emulation architecture for functional verification. In: DAC ’01: Proceedings of the 38th Conference on Design Automation, pp. 623–628 (2001). DOI
  40. 40.
    Lantz, R.E.: Fast functional simulation with parallel Embra. In: 4th Annual Workshop on Modeling, Benchmarking and Simulation, MOBS’08 (2008)Google Scholar
  41. 41.
    Larus, J.: Assemblers, linkers and the SPIM simulator. In: D.A. Patterson, J.L. Hennessy (eds.) Computer Organization and Design: The Hardware/software Interface. Morgan Kaufmann (2005)Google Scholar
  42. 42.
    Magnusson, P.S.: Efficient instruction cache simulation and execution profiling with a threaded-code interpreter. In: WSC ’97: Proceedings of the 29th Conference on Winter Simulation, pp. 1093–1100 (1997). DOI
  43. 43.
    Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Högberg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation platform. Computer 35(2), 50–58 (2002)CrossRefGoogle Scholar
  44. 44.
    May, C.: Mimic: a fast System/370 simulator. In: Symposium on Interpreters and Interpretive Techniques, pp. 1–13 (1987). DOI
  45. 45.
    Mills, C., Ahalt, S.C., Fowler, J.: Compiled instruction set simulation. Software: Practice and Experience 21(8), 877–889 (1991)CrossRefGoogle Scholar
  46. 46.
    Mishra, P., Dutt, N.: Processor Description Languages, Volume 1. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2008)Google Scholar
  47. 47.
    Nakamura, Y., Hosokawa, K.: Fast FPGA-emulation-based simulation environment for custom processors. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A(12), 3464–3470 (2006)CrossRefGoogle Scholar
  48. 48.
    Nakamura, Y., Hosokawa, K., Kuroda, I., Yoshikawa, K., Yoshimura, T.: A fast hardware/software co-verification method for system-on-a-chip by using a C/C++ simulator and FPGA emulator with shared register communication. In: DAC ’04: Proceedings of the 41st annual Conference on Design Automation, pp. 299–304 (2004). DOI
  49. 49.
    Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H., Hoffmann, A.: A universal technique for fast and flexible instruction-set architecture simulation. In: DAC ’02: Proceedings of the 39th Conference on Design Automation, pp. 22–27 (2002)Google Scholar
  50. 50.
    Pees, S., Hoffmann, A., Meyr, H.: Retargetable compiled simulation of embedded processors using a machine description language. ACM Transactions on Design Automation of Electronic Systems. 5(4), 815–834 (2000)CrossRefGoogle Scholar
  51. 51.
    Pellauer, M., Vijayaraghavan, M., Adler, M., Arvind, Emer, J.: A-Ports: An efficient abstraction for cycle-accurate performance models on FPGAs. In: FPGA ’08: Proceedings of the 16th International ACM/SIGDA Symposium on Field Programmable Gate Arrays, pp. 87–96 (2008). DOI
  52. 52.
    Pellauer, M., Vijayaraghavan, M., Adler, M., Arvind, Emer, J.: Quick performance models quickly: Closely-coupled partitioned simulation on FPGAs. In: ISPASS ’08: IEEE International Symposium on Performance Analysis of Systems and Software, pp. 1–10 (2008). DOI  10.1109/ISPASS.2008.4510733
  53. 53.
    Proebsting, T.A.: Optimizing an ANSI C interpreter with superoperators. In: POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 322–332 (1995). DOI
  54. 54.
    Qin, W., D’Errico, J., Zhu, X.: A multiprocessing approach to accelerate retargetable and portable dynamic-compiled instruction-set simulation. In: Proceedings of the 4th international conference on Hardware/software codesign and system synthesis, CODES+ISSS ’06, pp. 193–198. ACM, New York, NY, USA (2006). DOI URL
  55. 55.
    Raghav, S., Ruggiero, M., Atienza, D., Pinto, C., Marongiu, A., Benini, L.: Scalable instruction set simulator for thousand-core architectures running on gpgpus. In: International Conference on High Performance Computing and Simulation, HPCS ’10, pp. 459–466. IEEE (2010). DOI  10.1109/HPCS.2010.5547092
  56. 56.
    Reshadi, M., Dutt, N.: Generic pipelined processor modeling and high performance cycle-accurate simulator generation. In: DATE ’05: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 786–791 (2005). DOI
  57. 57.
    Reshadi, M., Dutt, N., Mishra, P.: A retargetable framework for instruction-set architecture simulation. ACM Transactions on Embedded Computing Systems (TECS) 5(2), 431–452 (2006)Google Scholar
  58. 58.
    Reshadi, M., Mishra, P., Dutt, N.: Instruction set compiled simulation: A technique for fast and flexible instruction set simulation. In: Proceedings of the 40th Conference on Design Automation, pp. 758–763 (2003). DOI
  59. 59.
    Reshadi, M., Mishra, P., Dutt, N.: Hybrid-compiled simulation: An efficient technique for instruction-set architecture simulation. ACM Transactions on Embedded Computing Systems (TECS) 8(3), 1–27 (2009)Google Scholar
  60. 60.
    Roeven, H., Coninx, J., Ade, M.: CoolFlux DSP: The embedded ultra low power C-programmable DSP core. In: GSPx’04: International Signal Processing Conference, pp. 1–7 (2004)Google Scholar
  61. 61.
    Rosenblum, M., Herrod, S.A., Witchel, E., Gupta, A.: Complete computer system simulation: The SimOS approach. IEEE Parallel & Distributed Technology 3(4), 34–43 (1995)CrossRefGoogle Scholar
  62. 62.
    Sathaye, S., Ledak, P., Leblanc, J., Kosonocky, S., Gschwind, M., Fritts, J., Bright, A., Altman, E., Agricola, C.: BOA: Targeting multi-gigahertz with binary translation. In: In Proceedings of the 1999 Workshop on Binary Translation, pp. 2–11 (1999)Google Scholar
  63. 63.
    Schnerr, J., Bringmann, O., Rosenstiel, W.: Cycle accurate binary translation for simulation acceleration in rapid prototyping of SoCs. In: DATE ’05: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 792–797 (2005). DOI
  64. 64.
    Schnerr, J., Haug, G., Rosenstiel, W.: Instruction set emulation for rapid prototyping of SoCs. In: DATE ’03: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 562–567 (2003)Google Scholar
  65. 65.
    Sites, R.L., Chernoff, A., Kirk, M.B., Marks, M.P., Robinson, S.G.: Binary translation. Communications of the ACM 36(2), 69–81 (1993). DOI
  66. 66.
    Smith, J.E., Nair, R.: Virtual Machines. Morgan Kaufman (2005)Google Scholar
  67. 67.
    Suh, T., Lee, H.H.S., Lu, S.L., Shen, J.: Initial observations of hardware/software co-simulation using FPGA in architectural research. In: WARFP’06: In Proceedings of the 2nd Workshop on Architecture Research using FPGA Platforms (2006)Google Scholar
  68. 68.
    Open SystemC Initiative.
  69. 69.
    Vachharajani, M., Vachharajani, N., August, D.I.: The Liberty Structural Specification Language: A high-level modeling language for component reuse. In: PLDI ’04: Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation, pp. 195–206 (2004)Google Scholar
  70. 70.
    Vachharajani, M., Vachharajani, N., Penry, D.A., Blome, J.A., Malik, S., August, D.I.: The Liberty Simulation Environment: A deliberate approach to high-level system modeling. ACM Transactions on Computer Systems 24(3), 211–249 (2006)CrossRefGoogle Scholar
  71. 71.
    Wang, K., Zhang, Y., Wang, H., Shen, X.: Parallelization of IBM Mambo system simulator in functional modes. SIGOPS Oper. Syst. Rev. 42, 71–76 (2008). DOI URL
  72. 72.
    Wang, Z., Liu, R., YufeiChen, Wu, X., Chen, H., Zhang, W., Zang, B.: COREMU: a scalable and portable parallel full-system emulator. In: Proceedings of the 16th ACM symposium on Principles and Practice of Parallel Programming, pp. 213–222. ACM (2011). URL
  73. 73.
    Witchel, E., Rosenblum, M.: Embra: Fast and flexible machine simulation. In: SIGMETRICS ’96: Proceedings of the 1996 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 68–79 (1996)Google Scholar
  74. 74.
    Yi, J.J., Lilja, D.J.: Simulation of computer architectures: Simulators, benchmarks, methodologies, and recommendations. IEEE Transactions on Computers 55(3), 268–280 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Florian Brandner
    • 1
    Email author
  • Nigel Horspool
    • 2
  • Andreas Krall
    • 3
  1. 1.Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Department of Computer ScienceUniversity of VictoriaVictoriaCanada
  3. 3.Institut für ComputersprachenTechnische Universität WienViennaAustria

Personalised recommendations