Skip to main content

Low-Power Wireless Sensor Network Platforms

  • Chapter
  • First Online:

Abstract

Wireless sensor network (WSN) is a technology comprising even thousands of autonomic and self-organizing nodes that combine environmental sensing, data processing, and wireless multihop ad-hoc networking. The features of WSNs enable monitoring, object tracking, and control functionality. The potential applications include environmental and condition monitoring, home automation, security and alarm systems, industrial monitoring and control, military reconnaissance and targeting, and interactive games. This chapter describes low-power WSN as a platform for signal processing by presenting the WSN services that can be used as building blocks for the applications. It explains the implications of resource constraints and expected performance in terms of throughput, reliability and latency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: Research challenges. Elsevier Ad Hoc Networks 2(4), 351–367 (2004)

    Article  Google Scholar 

  2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Elsevier Computer Networks 38(4), 393–422 (2002)

    Article  Google Scholar 

  3. Baunach, M., Kolla, R., Mhlberger, C.: Beyond theory: Development of a real world localization application as low power wsn. In: Proc. 32nd IEEE Conference on Local Computer Networks (LCN’07), pp. 872–884. Dublin, Ireland (2007)

    Google Scholar 

  4. Buettner, M., Yee, G., Anderson, E., Han, R.: X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In: Proc. 4th ACM Conf. Embedded Networked Sensor Systems (SenSys’06), pp. 307–320. Boulder, Colorado, USA (2006)

    Google Scholar 

  5. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for very small devices. Personal Communications, IEEE [see also IEEE Wireless Communications] 7(5), 28–34 (2000)

    Google Scholar 

  6. Colvin, A.: CSMA with collision avoidance. Computer Communications 6(5), 227–235 (1983)

    Article  Google Scholar 

  7. Crossbow Technology, Inc.: Stargate X-Scale processor platform. Available: http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/6020-0049-01_B_STARGATE.pdf (2004)

  8. Elnahrawy, E., Li, X., Martin, R.P.: The limits of localization using signal strength: a comparative study. In: Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on, pp. 406–414 (2004)

    Google Scholar 

  9. Enz, C.C., El-Hoiydi, A., Decotignie, J.D., Peiris, V.: WiseNET: An ultralow-power wireless sensor network solution. Computer 37(8), 62–70 (2004)

    Article  Google Scholar 

  10. Fox, V., Hightower, J., Liao, L., Schulz, D., Borriello, G.: Bayesian filtering for location estimation. Pervasive Computing, IEEE 2(3), 24–33 (July-Sept. 2003). DOI 10.1109/MPRV.2003.1228524

    Google Scholar 

  11. Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for sensor networks. In: SenSys ’03: Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 138–149. ACM, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/958491.958508

  12. Greunen, J.V., Rabaey, J.: Lightweight time synchronization for sensor networks. In: WSNA ’03: Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications, pp. 11–19. ACM, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/941350.941353

  13. Guo, C., Zhong, L., Rabaey, J.: Low power distributed MAC for ad hoc sensor radio networks. In: Global Telecommunications Conf. (GLOBECOM’01), vol. 5, pp. 2944–2948. San Antonio, TX, USA (2001)

    Google Scholar 

  14. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 34(8), 57–66 (2001)

    Article  Google Scholar 

  15. Hightower, J., Brumitt, B., Borriello, G.: The location stack: a layered model for location in ubiquitous computing. Mobile Computing Systems and Applications, 2002. Proceedings Fourth IEEE Workshop on pp. 22–28 (2002). DOI 10.1109/MCSA.2002.1017482

  16. Hill, J., Horton, M., Kling, R., Krishnamurthy, L.: Wireless sensor networks: The platforms enabling wireless sensor networks. Communications of the ACM 6(47), 41–46 (2004)

    Article  Google Scholar 

  17. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for networked sensors. In: Proc. 9th ACM Int’l Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS’00), pp. 94–103. Cambridge, MA, USA (2000)

    Google Scholar 

  18. Hodes, T.D., Katz, R.H., Servan-Schreiber, E., Rowe, L.: Composable ad-hoc mobile services for universal interaction. In: MobiCom ’97: Proceedings of the 3rd annual ACM/IEEE international conference on Mobile computing and networking, pp. 1–12. ACM, New York, NY, USA (1997). DOI http://doi.acm.org/10.1145/262116.262121

  19. IEEE 802.15.4: IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPAN) (2006)

    Google Scholar 

  20. ISA: ISA100.11a release 1. Available: http://www.isa.org/source/ISA100.11a_Release1_Status.ppt (2007)

  21. Al Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications 11(6), 6–28 (2004)

    Article  Google Scholar 

  22. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. John Wiley & Sons Ltd (2005)

    Google Scholar 

  23. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: Proc. 6th annual Int’l Conf. on mobile computing and networking (MobiCom’00), pp. 243–254. Boston, MA, USA (2000)

    Google Scholar 

  24. Kaseva, V.A., Kohvakka, M., Kuorilehto, M., Hännikäinen, M., Hämäläinen, T.D.: A wireless sensor network for RF-based indoor localization. EURASIP Journal on Advances in Signal Processing (2008). DOI 10.1155/2008/731835

    Google Scholar 

  25. Kohvakka, M.: Medium access control and hardware prototype designs for low-energy wireless sensor networks. Ph.D. thesis, Tampere University of Technology, Tampere, Finland (2009)

    Google Scholar 

  26. Kulik, J., Heinzelman, W., Balakrishnan, H.: Negotiation-based protocols for disseminating information in wireless sensor networks. Kluwer Wireless Networks 8(2), 169–185 (2002)

    Article  MATH  Google Scholar 

  27. Kuorilehto, M., Kohvakka, M., Suhonen, J., Hmlinen, P., Hnnikinen, M., Hmlinen, T.D.: Ultra-Low Energy Wireless Sensor Networks in Practice - Theory, Realization and Deployment. John Wiley & Sons Ltd (2007)

    Book  Google Scholar 

  28. Li, M.Q., Rus, M.D.: Global clock synchronization in sensor networks. IEEE Trans. Comput. 55(2), 214–226 (2006). DOI http://dx.doi.org/10.1109/TC.2006.25

    Google Scholar 

  29. Liu, J., Zhao, F., Petrovic, D.: Information-directed routing in ad hoc sensor networks. IEEE Journal on Selected Areas in Communications 23(4), 851–861 (2005)

    Article  Google Scholar 

  30. Lorincz, K., Welsh, M.: MoteTrack: A robust, decentralized approach to RF-based location tracking. In: In Proceedings of the International Workshop on Location- and Context-Awareness (LoCA 2005) at Pervasive 2005. Oberpfaffenhofen, Germany (2005)

    Google Scholar 

  31. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query processor for sensor networks. In: Proc. ACM Int’l Conf. on Management of Data (SIGMOD’03), pp. 491–502. San Diego, CA, USA (2003)

    Google Scholar 

  32. Maróti, M., Kusy, B., Simon, G., Ákos Lédeczi: The flooding time synchronization protocol. In: SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 39–49. ACM, New York, NY, USA (2004). DOI http://doi.acm.org/10.1145/1031495.1031501

  33. Min, R., Bhardwaj, M., Cho, S.H., Ickes, N., Shih, E., Sinha, A., Wang, A., Chandrakasan, A.: Energy-centric enabling technologies for wireless sensor networks. IEEE Wireless Communications 9(4), 28–39 (2002)

    Article  Google Scholar 

  34. Niculescu, D.: Communication paradigms for sensor networks. IEEE Communications Magazine 43(3), 116–122 (2005)

    Article  MathSciNet  Google Scholar 

  35. Niculescu, D., Nath, B.: Trajectory based forwarding and its applications. In: Proc. 9th annual Int’l Conf. on Mobile computing and networking (MobiCom’03), pp. 260–272. San Diego, CA, USA (2003)

    Google Scholar 

  36. Norair, J.P.: Introduction to DASH7 technologies. Tech. rep., DASH7 Technology Working Group (2009)

    Google Scholar 

  37. Patwari, N., Ash, J.N., Kyperountas, S., Hero III, A.O., Moses, R.L., Correal, N.S.: Locating the nodes: cooperative localization in wireless sensor networks. Signal Processing Magazine, IEEE 22(4), 54–69 (2005)

    Article  Google Scholar 

  38. Ping, S.: Delay measurement time synchronization for wireless sensor networks. Tech. Rep. IRB-TR-03-013, Intel Research Berkeley Lab (2003)

    Google Scholar 

  39. Pitcher, G.: If the cap fits New Electronics pp. 25–26 (2006)

    Google Scholar 

  40. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: Proc. 2nd Internation Conf. on Embedded Networked Sensor Systems (Sensys’04), pp. 95–107. Baltimore, MD, USA (2004)

    Google Scholar 

  41. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: MobiCom ’00: Proceedings of the 6th annual international conference on Mobile computing and networking, pp. 32–43. ACM Press, New York, NY, USA (2000)

    Google Scholar 

  42. Priyantha, N.B., Miu, A.K.L., Balakrishnan, H., Teller, S.: The cricket compass for context-aware mobile applications. In: MobiCom ’01: Proceedings of the 7th annual international conference on Mobile computing and networking, pp. 1–14. ACM Press, New York, NY, USA (2001)

    Google Scholar 

  43. Reason, J.M., Rabaey, J.M.: A study of energy consumption and reliability in a multi-hop sensor network. ACM SIGMOBILE Mobile Computing and Communications Review 8(1), 84–97 (2004)

    Article  Google Scholar 

  44. Roberts, L.: ALOHA packet system with and without slots and capture. ACM SIGCOMM Computer Communication Review 5(2), 28–42 (1975)

    Article  Google Scholar 

  45. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications 26(11), 1131–1144 (2003)

    Article  Google Scholar 

  46. Rmer, K., Kasten, O., Mattern, F.: Middleware challenges for wireless sensor networks. ACM SIGMOBILE Mobile Computing and Communications Review 6(4), 59–61 (2002)

    Article  Google Scholar 

  47. Sichitiu, M., Veerarittiphan, C.: Simple, accurate time synchronization for wireless sensor networks. In: WCNC ’03: Proceedings of the IEEE conference on Wireless Communications and Networking, vol. 2, pp. 1266–1273 (2003)

    Google Scholar 

  48. Stallings, W.: Operating Systems Internals and Design Principles, 5 edn. Prentice-Hall (2005)

    Google Scholar 

  49. Su, W., Akyildiz, I.F.: Time-diffusion synchronization protocol for wireless sensor networks. IEEE/ACM Trans. Netw. 13(2), 384–397 (2005). DOI http://dx.doi.org/10.1109/TNET.2004.842228

  50. Suhonen, J., Hmlinen, T.D., Hnnikinen, M.: Availability and end-to-end reliability in low duty cycle multihop wireless sensor networks. Sensors 9(3), 2088–2116 (2009)

    Article  Google Scholar 

  51. Tian He, Stankovic, J.A., Lu, C., Abdelzaher, T.: SPEED: A stateless protocol for real-time communication in sensor networks. In: Proc. 23rd Int’l Conf. on Distributed Computing Systems, pp. 46–55. Providence, RI, USA (2003)

    Google Scholar 

  52. van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proc. 1st Int’l Conf. on Embedded Networked Sensor Systems (Sensys’03), pp. 171–180. Los Angeles, CA, USA (2003)

    Google Scholar 

  53. Wan, C.Y., Campbell, A.T., Krishnamurthy, L.: Pump-slowly, fetch-quickly (PSFQ): A reliable transport protocol for sensor networks. IEEE Journal on Selected Areas in Communications 23(4), 862–872 (2005)

    Article  Google Scholar 

  54. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM Transactions on Information Systems 10(1), 91–102 (1992)

    Article  Google Scholar 

  55. Wolf, M., Kress, D.: Short-range wireless infrared transmission: the link budget compared to RF. IEEE Wireless Communications Magazine 10(2), 8–14 (2003)

    Article  Google Scholar 

  56. Ye, F., Zhong, G., Lu, S., Zhang, L.: GRAdient broadcast: a robust data delivery protocol for large scale sensor networks. Kluwer Wireless Networks 11(3), 285–298 (2005)

    Article  Google Scholar 

  57. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks. In: Proc. 21st Annual Joint Conf. of the IEEE Computer and Communications Societies (INFOCOM’02), vol. 3, pp. 1567–1576. New York, NY, USA (2002)

    Google Scholar 

  58. Yoon, S.: Power management in wireless sensor networks. North Carolina State University, PhD Thesis (2007)

    Google Scholar 

  59. Youssef, M.A., Agrawala, A., Shankar, A.U.: WLAN location determination via clustering and probability distributions. In: Pervasive Computing and Communications, 2003. (PerCom 2003). Proceedings of the First IEEE International Conference on, pp. 143–150 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Suhonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suhonen, J., Kohvakka, M., Kaseva, V., Hämäläinen, T.D., Hännikäinen, M. (2013). Low-Power Wireless Sensor Network Platforms. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6859-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6859-2_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6858-5

  • Online ISBN: 978-1-4614-6859-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics