Medical Image Processing

  • Raj Shekhar
  • Vivek Walimbe
  • William Plishker


Medical image processing, a specialization of classical image processing, focuses on reconstruction, processing, and visualization of medical images. The field has gained particular prominence as medical imaging devices have emerged as a vast and fast growing source of image data. This chapter introduces the reader to the common medical image acquisition techniques and, using two case studies, to the imaging pipeline observed in many medical applications. Each of the stages of the pipeline, which includes reconstruction, preprocessing, segmentation, registration and visualization are presented in greater detail. Medical images continue to trend toward higher resolution and higher dimensions. Together with a persistent need for speed for clinical efficiency, this trend has created new computational challenges for practical implementations of many medical image processing algorithms. The chapter concludes with a discussion of computational needs and a brief survey of current solutions.


Positron Emission Tomography Single Photon Emission Compute Tomography Image Registration Message Passing Interface Nonrigid Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bankman, I.N.: Handbook of Medical Image Processing and Analysis (Part II), 2 edn. Elsevier Science and Technology Books (2008)Google Scholar
  2. 2.
    Beutel, J., Kundel, H.L., Metter, R.V.: Handbook of medical imaging. Volume 1: Physics and psychophysics. SPIE Press, Bellingham, WA (2000)Google Scholar
  3. 3.
    Blake, G., Dreslinski, R.G., Mudge, T.: A survey of multicore processors. IEEE Signal Processing Magazine 26(6), 26–37 (2009)CrossRefGoogle Scholar
  4. 4.
    Castro-Pareja, C.R., Shekhar, R.: Hardware acceleration of mutual information-based 3D image registration. Journal of Imaging Science and Technology 49(2), 105–113 (2005)Google Scholar
  5. 5.
    Dandekar, O., Castro-Pareja, C.R., Shekhar, R.: FPGA-based real-time 3D image preprocessing for image-guided medical interventions. Journal of Real-Time Image Processing 1(4), 285–301 (2007)CrossRefGoogle Scholar
  6. 6.
    Dhawan, A.P.: Medical Image Analysis. John Wiley & Sons, Hoboken, NJ (2003)Google Scholar
  7. 7.
    Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612–619 (1984). DOI 10.1364/ JOSAA.1.000612CrossRefGoogle Scholar
  8. 8.
    Frost, Sullivan: The potential for radiology informatics: The next big wave since anesthetics discovery in medicine (2009). Analyst BriefingGoogle Scholar
  9. 9.
    Goldman, L.W.: Principles of CT: multislice CT. Journal of Nuclear Medicine Technology 36(2) (2008). DOI 10.2967/jnmt.107.044826Google Scholar
  10. 10.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3 edn. Prentice Hall (2008)Google Scholar
  11. 11.
    Hajnal, J.V., Hawkes, D.J., Hill, D.L.G.: Medical Image Registration. CRC Press, Boca Raton, FL (2001)CrossRefGoogle Scholar
  12. 12.
    Hudson, M., Larkin, R.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imag 13, 601–609 (1994)CrossRefGoogle Scholar
  13. 13.
    Ino, F., Ooyama, K., Hagihara, K.: A data distributed parallel algorithm for nonrigid image registration. Parallel Computing 31, 19–43 (2005)CrossRefGoogle Scholar
  14. 14.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, Piscataway, NJ (1988)MATHGoogle Scholar
  15. 15.
    Kaufman, A.: Volume Visualization. IEEE Computer Society Press, Los Alamitos, CA (1990)Google Scholar
  16. 16.
    Kim, Y., Horii, S.C.: Handbook of Medical Imaging. Volume 3: Display and PACS. SPIE Press, Bellingham, WA (2000)Google Scholar
  17. 17.
    Lacroute, P., Levoy, M.: Fast volume rendering using a shear-warp factorization of the viewing transformation. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, pp. 451–458. ACM, New York, NY, USA (1994)Google Scholar
  18. 18.
    Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: Concepts and applications. J. Magn. Reson. Imaging 13(4), 534–546 (2001). DOI 10. 1002/jmri.1076Google Scholar
  19. 19.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’87, pp. 163–169. ACM, New York, NY, USA (1987)Google Scholar
  20. 20.
    Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. The Computer Journal 7(4), 308–313 (1965). DOI 10.1093/comjnl/7.4. 308MATHCrossRefGoogle Scholar
  21. 21.
    NEMA: Digital Imaging and Communications in Medicine, Part 1–15. NEMA Standards Publication PS3.X (2000)Google Scholar
  22. 22.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)CrossRefGoogle Scholar
  23. 23.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging 22(8), 986–1004 (2003). DOI 10.1109/TMI.2003.815867CrossRefGoogle Scholar
  24. 24.
    Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal 7(2), 155–162 (1964). DOI 10.1093/comjnl/7.2.155MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Prince, J.L., Links, J.M.: Medical Imaging Signals and Systems. Pearson Prentice Hall, Upper Saddle River, NJ (2006)Google Scholar
  26. 26.
    Ranganath, M.V., Dhawan, A.P., Mullani, N.: A multigrid expectation maximization reconstruction algorithm for positron emission tomography. IEEE Transactions on Medical Imaging 7(4), 273–278 (1988)CrossRefGoogle Scholar
  27. 27.
    Ross, B., Kreis, R., Ernst, T.: Clinical tools for the 90s: magnetic resonance spectroscopy and metabolite imaging. Eur J Radiol 14(2), 128–40 (1992)CrossRefGoogle Scholar
  28. 28.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast mr images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  29. 29.
    Saha, S., Puthenpurayil, S., Schlessman, J., Bhattacharyya, S.S., Wolf, W.: The Signal Passing Interface and Its Application to Embedded Implementation of Smart Camera Applications. Proceedings of the IEEE 96(10), 1576–1587 (2008). DOI 10.1109Google Scholar
  30. 30.
    Salgo, I.S.: Three-dimensional echocardiographic technology. Cardiol Clin 25(2), 231–9 (2007)CrossRefGoogle Scholar
  31. 31.
    Sen, M., Hemaraj, Y., Plishker, W., Shekhar, R., Bhattacharyya, S.S.: Model-based mapping of reconfigurable image registration on FPGA platforms. Journal of Real-Time Image Processing (2008). 14 pagesGoogle Scholar
  32. 32.
    Shams, R., Barnes, N.: Speeding up mutual information computation using NVIDIA CUDA hardware. In: Proc. Digital Image Computing: Techniques and Applications (DICTA), pp. 555–560. Adelaide, Australia (2007). DOI 10.1109/DICTA.2007.4426846Google Scholar
  33. 33.
    Shekhar, R., Walimbe, V., Raja, S., Zagrodsky, V.: Automated 3-dimensional elastic registration of whole-body PET and CT from separate or combined scanners. The Journal of Nuclear Medicine 46 (9), 1488–1496 (2005)Google Scholar
  34. 34.
    Shepp, L.A., Vardi, Y.: Maximum Likelihood Reconstruction for Emission Tomography. IEEE Transactions on Medical Imaging 1(2), 113–122 (1982). DOI 10.1109/TMI.1982.4307558CrossRefGoogle Scholar
  35. 35.
    Sikdar, S., Managuli, R., Gong, L., Shamdasani, V., Mitake, T., Hayashi, T., Kim, Y.: A single mediaprocessor-based programmable ultrasound system. IEEE Trans Inf Technol Biomed 7(1), 64–70 (2003)CrossRefGoogle Scholar
  36. 36.
    Singh, A., Goldgof, D.B., Terzopoulos, D. (eds.): Deformable Models in Medical Image Analysis. IEEE Computer Society, Los Alamitos, CA, USA (1998)Google Scholar
  37. 37.
    Smith, S.W., Pavy, H.G., von Ramm, O.T.: High-speed ultrasound volumetric imaging system. I. Transducer design and beam steering. UIEEE Transactions on ltrasonics, Ferroelectrics and Frequency Control 38(2), 100–108 (2002). DOI 10.1109/58.68466Google Scholar
  38. 38.
    Sonka, M., Fitzpatrick, J.M.: Handbook of Medical Imaging. Volume 2: Medical Image Processing and Analysis. SPIE Press, Bellingham, WA (2000)Google Scholar
  39. 39.
    Suri, J.S., Setarehdan, S.K., Singh, S.: Algorithmic Approaches to Medical Image Segmentation: State of The Art Applications in Cardiology, Neurology, Mammography and Pathology. Advanced, 1 edn. Springer (2002)Google Scholar
  40. 40.
    Von Ramm, O.T., Smith, S.W., Pavy, H.R.: High-speed ultrasound volumetric imaging system. ii. parallel processing and image display. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38(2), 109–115 (1991)Google Scholar
  41. 41.
    Walimbe, V., Garcia, M., Lalude, O., Thomas, J., Shekhar, R.: Quantitative real-time 3-dimensional stress echocardiography: a preliminary investigation of feasibility and effectiveness. J Am Soc Echocardiogr 20(1), 13–22 (2007)CrossRefGoogle Scholar
  42. 42.
    Walimbe, V., Zagrodsky, V., Shekhar, R.: Fully automatic segmentation of left ventricular myocardium in real-time three-dimensional echocardiography. In: J. M. Reinhardt & J. P. W. Pluim (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6144, pp. 1437–1446 (2006). DOI 10.1117/12.654050Google Scholar
  43. 43.
    Wester, H.: Nuclear imaging probes: from bench to bedside. Clin Cancer Res 13(12), 3470–81 (2007)CrossRefGoogle Scholar
  44. 44.
    Zagrodsky, V., Phelan, M., Shekhar, R.: Automated detection of a blood pool in ultrasound images of abdominal trauma. Ultrasound Med Biol 33(11), 1720–6 (2007)CrossRefGoogle Scholar
  45. 45.
    Zagrodsky, V., Walimbe, V., Castro-Pareja, C.R., Qin, J.X., Song, J.M., Shekhar, R.: Registration-assisted segmentation of real-time 3-D echocardiographic data using deformable models. IEEE Trans Med Imaging 24(9), 1089–99 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Children’s National Medical CenterWashington, DCUSA
  2. 2.GE HealthcareWIUSA
  3. 3.University of MarylandCollege ParkUSA

Personalised recommendations