Neurobiological Bases of Self-Reference and Deliberate Processing in Tailored Health Communication

  • Shaun Ho
  • Hannah Faye Chua


In this chapter, we aim to provide a theoretical framework with empirical evidence to understand psychological and neural mechanisms involved in tailored health communications. We will first describe the primary psychological mechanisms, self-reference and deliberate processing, that are necessary for making health communications effective in driving behavioral changes. Then, we will describe the underlying neurobiological mechanisms in the context of a web-based tailored health communication. Using functional magnetic resonance imaging (fMRI) technique, we have identified in the past key midline brain structures, namely medial prefrontal cortex and precuneus, underlying self-reference processing that can predict the outcomes of a web-based tailored smoking cessation program. In addition to these brain regions, we will in this chapter describe the neural mechanisms associated with deliberate processing capacity that were identified using eye movements and neuroimaging technique. Integrations of information technology and cognitive-based training that improve skills involving self-referential and deliberate processing are recommended for applications.


Smoking Cessation Health Message Smoking Cessation Program Deliberate Processing Undesirable Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Brug, J., Campbell, M., & van Assema, P. (1999). The application and impact of computer-generated personalized nutrition education: A review of the literature. Patient Education and Counseling, 36(2), 145–156. doi: S0738-3991(98)00131-1.PubMedCrossRefGoogle Scholar
  2. Chua, H. F., Ho, S. S., Jasinska, A. J., Polk, T. A., Welsh, R. C., Liberzon, I., et al. (2011). Self-related neural response to tailored smoking-cessation messages predicts quitting. Nature Neuroscience,. doi: 10.1038/nn.2761.PubMedGoogle Scholar
  3. Chua, H. F., Liberzon, I., Welsh, R. C., & Strecher, V. J. (2009). Neural correlates of message tailoring and self-relatedness in smoking cessation programming. Biological Psychiatry, 65(2), 165–168. doi: 10.1016/j.biopsych.2008.08.030.PubMedCrossRefGoogle Scholar
  4. Deans, P., O’Laughlin, L., Brubaker, B., Gay, N., & Krug, D. (2010). Use of eye movement tracking in the differential diagnosis of attention deficit hyperactivity disorder (ADHD) and reading disability. Psychology, 1(4), 238–246. doi: 10.4236/psych.2010.14032.CrossRefGoogle Scholar
  5. Dijkstra, A. (2005). Working mechanisms of computer-tailored health education: Evidence from smoking cessation. Health Education Research, 20(5), 527–539. doi: 10.1093/her/cyh014.PubMedCrossRefGoogle Scholar
  6. Forgas, J. P. (1992). Affect in social judgments and decisions: A multiprocess model. In: Mark, P. Z. (Ed.), Advances in experimental social psychology (pp 227–275). vol. 25, Academic Press.Google Scholar
  7. Fossati, P., Hevenor, S. J., Graham, S. J., Grady, C., Keightley, M. L., Craik, F., et al. (2003). In search of the emotional self: An fMRI study using positive and negative emotional words. American Journal of Psychiatry, 160(11), 1938–1945.PubMedCrossRefGoogle Scholar
  8. Fredrickson, B. L. (2001). The role of positive emotions in positive psychology. The broaden-and-build theory of positive emotions. American Psychologist, 56(3), 218–226.PubMedCrossRefGoogle Scholar
  9. Fredrickson, B. L., Cohn, M. A., Coffey, K. A., Pek, J., & Finkel, S. M. (2008). Open hearts build lives: Positive emotions, induced through loving-kindness meditation, build consequential personal resources. Journal of Personality and Social Psychology, 95(5), 1045–1062. doi: 10.1037/a0013262.PubMedCrossRefGoogle Scholar
  10. Hawkins, R. P., Kreuter, M., Resnicow, K., Fishbein, M., & Dijkstra, A. (2008). Understanding tailoring in communicating about health. Health Education Research, 23(3), 454–466. doi: 10.1093/her/cyn004.PubMedCrossRefGoogle Scholar
  11. Hofmann, S. G., Grossman, P., & Hinton, D. E. (2011). Loving-kindness and compassion meditation: potential for psychological interventions. Clinical Psychology Review, 31(7), 1126–1132. doi: 10.1016/j.cpr.2011.07.003.PubMedCrossRefGoogle Scholar
  12. Jones, M. W., Obregon, M., Louise Kelly, M., & Branigan, H. P. (2008). Elucidating the component processes involved in dyslexic and non-dyslexic reading fluency: an eye-tracking study. Cognition, 109(3), 389–407. doi: 10.1016/j.cognition.2008.10.005.PubMedCrossRefGoogle Scholar
  13. Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of cognitive neuroscience, 14(5), 785–794. doi: 10.1162/08989290260138672.PubMedCrossRefGoogle Scholar
  14. Kreuter, M. W., & Holt, C. L. (2001). How do people process health information? Applications in an age of individualized communication. Current Directions in Psychological Science, 10(6), 206–209.CrossRefGoogle Scholar
  15. Lancaster, T., Stead, L. F. (2005). Self-help interventions for smoking cessation. Cochrane Database System Review 3(3):CD001118. doi: 10.1002/14651858.CD001118.pub2.
  16. Martin, K. C., Barad, M., & Kandel, E. R. (2000). Local protein synthesis and its role in synapse-specific plasticity. Current Opinion in Neurobiology, 10(5), 587–592.PubMedCrossRefGoogle Scholar
  17. Nader, K., Schafe, G. E., & Le Doux, J. E. (2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406(6797), 722–726. doi: 10.1038/35021052.PubMedCrossRefGoogle Scholar
  18. Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain–a meta-analysis of imaging studies on the self. Neuroimage, 31(1), 440–457. doi: 10.1016/j.neuroimage.2005.12.002.PubMedCrossRefGoogle Scholar
  19. Ochsner, K. N., Beer, J. S., Robertson, E. R., Cooper, J. C., Gabrieli, J. D., Kihsltrom, J. F., et al. (2005). The neural correlates of direct and reflected self-knowledge. Neuroimage, 28(4), 797–814. doi: 10.1016/j.neuroimage.2005.06.069.PubMedCrossRefGoogle Scholar
  20. Pace, T. W., Negi, L. T., Adame, D. D., Cole, S. P., Sivilli, T. I., Brown, T. D., et al. (2009). Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress. Psychoneuroendocrinology, 34(1), 87–98. doi: 10.1016/j.psyneuen.2008.08.011.PubMedCrossRefGoogle Scholar
  21. Pascual-Leone, A., & Greenberg, L. S. (2007). Emotional processing in experiential therapy: why “the only way out is through.”. Journal of Consulting and Clinical Psychology, 75(6), 875–887. doi: 10.1037/0022-006X.75.6.875.PubMedCrossRefGoogle Scholar
  22. Phan, K. L., Taylor, S. F., Welsh, R. C., Ho, S. H., Britton, J. C., & Liberzon, I. (2004). Neural correlates of individual ratings of emotional salience: a trial-related fMRI study. Neuroimage, 21(2), 768–780. doi: 10.1016/j.neuroimage.2003.09.072.PubMedCrossRefGoogle Scholar
  23. Quirk, G. J., Pare, D., Richardson, R., Herry, C., Monfils, M. H., Schiller, D., et al. (2010). Erasing fear memories with extinction training. Journal of Neuroscience, 30(45), 14993–14997. doi: Doi10.1523/Jneurosci.4268-10.2010.PubMedCrossRefGoogle Scholar
  24. Redondo, R. L., & Morris, R. G. (2011). Making memories last: the synaptic tagging and capture hypothesis. Nature Reviews Neuroscience, 12(1), 17–30. doi: 10.1038/nrn2963.PubMedCrossRefGoogle Scholar
  25. Si, K., Choi, Y. B., White-Grindley, E., Majumdar, A., & Kandel, E. R. (2010). Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell, 140(3), 421–435. doi: DOI10.1016/j.cell.2010.01.008.PubMedCrossRefGoogle Scholar
  26. Skinner, C. S., Strecher, V. J., & Hospers, H. (1994). Physicians’ recommendations for mammography: do tailored messages make a difference? American Journal of Public Health, 84(1), 43–49.PubMedCrossRefGoogle Scholar
  27. Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance. American Psychologist, 52(6), 613–629. doi: 10.1037/0003-066x.52.6.613.PubMedCrossRefGoogle Scholar
  28. Strecher, V. J. (1999). Computer-tailored smoking cessation materials: a review and discussion. Patient Education and Counseling, 36(2), 107–117. doi: S0738-3991(98)00128-1.PubMedCrossRefGoogle Scholar
  29. Strecher, V. J., McClure, J. B., Alexander, G. L., Chakraborty, B., Nair, V. N., Konkel, J. M., et al. (2008). Web-based smoking-cessation programs: results of a randomized trial. American Journal of Preventive Medicine, 34(5), 373–381. doi: 10.1016/j.amepre.2007.12.024.PubMedCrossRefGoogle Scholar
  30. Symons, C. S., & Johnson, B. T. (1997). The self-reference effect in memory: a meta-analysis. Psychological Bulletin, 121(3), 371–394.PubMedCrossRefGoogle Scholar
  31. Vossel, S., Warbrick, T., Mobascher, A., Winterer, G., & Fink, G. R. (2011). Spatial and sustained attention in relation to smoking status: Behavioural performance and brain activation patterns. Journal of Psychopharmacology, 25(11), 1485–1495. doi: 10.1177/0269881110391830.PubMedCrossRefGoogle Scholar
  32. Wheeler, S. C., Demarree, K. G., & Petty, R. E. (2007). Understanding the role of the self in prime-to-behavior effects: The active-self account. Personality and Social Psychology Review, 11(3), 234–261. doi: 10.1177/1088868307302223.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations