Advertisement

Physical Activity, Cardiorespiratory Fitness, and Cognition Across the Lifespan

  • Edward McAuleyEmail author
  • Sean P. Mullen
  • Charles H. Hillman

Abstract

In this chapter, we review the literature relative to physical activity, exercise training, and cardiorespiratory fitness associations with cognitive function, and brain structure and function. We begin by examining these relationships in the context of older adults, which represents the greatest proportion of the literature in this area. We conclude that data from exercise training studies show a consistent protective effect of exercise and, in particular cardiorespiratory fitness, on executive function and brain health. Next, we review a more recent series of studies that have focused on extending fitness effects on brain and cognition to children. This work is suggestive of a positive association between fitness and brain structure and function, cognitive function, and scholastic achievement. We conclude by discussing emerging trends and future directions in the physical activity and cognition field and argue that the maintenance of an active lifestyle across the lifespan may be as important for brain health as it is for physical health.

Keywords

Physical Activity Exercise Training Default Mode Network Executive Control Hippocampal Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Partial support for the preparation of this manuscript was provided by a grant from the National Institute of Child Health and Human Development (NICHD R01 HD055352) to Charles Hillman and the National Institute on Aging (NIA 2R01 AG020118) to Edward McAuley.

References

  1. Anderson-Hanley, C., Arciero, P. J., Brickman, A. M., Nimon, J. P., Okuma, N., Westen, S. C., et al. (2012). Exergaming and older adult cognition: A cluster randomized clinical trial. American Journal of Preventive Medicine, 42(2), 109–119. doi: 10.1016/j.amepre.2011.10.016.PubMedCrossRefGoogle Scholar
  2. Anderson-Hanley, C., Nimon, J. P., & Westen, S. C. (2010). Cognitive health benefits of strengthening exercise for community-dwelling older adults. Journal of Clinical and Experimental Neuropsychology, 32(9), 996–1001. doi: 10.1080/13803391003662702.PubMedCrossRefGoogle Scholar
  3. Anstey, K. J., Wood, J., Kerr, G., Caldwell, H., & Lord, S. R. (2009). Different cognitive profiles for single compared with recurrent fallers without dementia. Neuropsychology, 23(4), 500–508. doi: 10.1037/A0015389.PubMedCrossRefGoogle Scholar
  4. Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., et al. (2010). Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Archives of Neurology, 67(1), 71–79. doi: 10.1001/archneurol.2009.307.PubMedCrossRefGoogle Scholar
  5. Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn?: A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637. doi: 10.1037/0033-2909.128.4.612.PubMedCrossRefGoogle Scholar
  6. Black, J. E., & Greenough, W. T. (1986). Induction of pattern in neural structure by experience: Implications for cognitive development. Advances in Developmental Psychology, 4, 1–50.Google Scholar
  7. Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences, 106(18), 7351–7356. doi: 10.1073/pnas.0808187106.CrossRefGoogle Scholar
  8. Burns, J. M., Cronk, B. B., Anderson, H. S., Donnelly, J. E., Thomas, G. P., Harsha, A., et al. (2008). Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology, 71(3), 210–216. doi: 10.1212/01.wnl.0000317094.86209.cb.PubMedCrossRefGoogle Scholar
  9. Castelli, D. M., Hillman, C. H., Buck, S. M., & Erwin, H. E. (2007). Physical fitness and academic achievement in third-and fifth-grade students. Journal of Sport and Exercise Psychology, 29(2), 239–252.PubMedGoogle Scholar
  10. Center for Disease Control and Prevention/National Center for Health Statistics, H. D. I. (2009). Summary health statistics for U.S. adults: National Health Interview Survey, 2009, table 29, from www.cdc.gov/nchs/hdi.htm.
  11. Center for Disease Control and Prevention/National Center for Health Statistics, H. D. I. (2010). Prevalence of overweight, obesity, and extreme obesity among adults: United States, trends 1976–1980 through 2007–2008, from www.cdc.gov/nchs/hdi.htm.
  12. Chaddock, L., Erickson, K. I., Prakash, R. S., VanPatter, M., Voss, M. W., Pontifex, M. B., et al. (2010). Basal ganglia volume is associated with aerobic fitness in preadolescent children. Developmental Neuroscience, 32(3), 249–256. doi: 10.1159/000316648.PubMedCrossRefGoogle Scholar
  13. Chaddock, L., Hillman, C. H., Buck, S. M., & Cohen, N. J. (2011). Aerobic fitness and executive control of relational memory in preadolescent children. Medicine and Science in Sports and Exercise, 43(2), 344–349. doi: 10.1249/MSS.0b013e3181e9af48.PubMedCrossRefGoogle Scholar
  14. Chang, Y., Labban, J., Gapin, J., & Etnier, J. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. doi: 10.1016/j.brainres.2012.02.068.PubMedCrossRefGoogle Scholar
  15. Chomitz, V. R., Slining, M. M., McGowan, R. J., Mitchell, S. E., Dawson, G. F., & Hacker, K. A. (2009). Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the northeastern United States. Journal of School Health, 79(1), 30–37.PubMedCrossRefGoogle Scholar
  16. Coe, D. P., Pivarnik, J. M., Womack, C. J., Reeves, M. J., & Malina, R. M. (2006). Effect of physical education and activity levels on academic achievement in children. Medicine and Science in Sports and Exercise, 38(8), 1515–1519. doi: 10.1249/01.mss.0000227537.13175.1b.PubMedCrossRefGoogle Scholar
  17. Cohen, N. J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. Cambridge: MIT press.Google Scholar
  18. Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., et al. (2003). Aerobic fitness reduces brain tissue loss in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58(2), M176–M180.CrossRefGoogle Scholar
  19. Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(11), 1166–1170.CrossRefGoogle Scholar
  20. Colcombe, S. J., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125–130.PubMedCrossRefGoogle Scholar
  21. Colcombe, S. J., Kramer, A. F., McAuley, E., Erickson, K. I., & Scalf, P. (2004). Neurocognitive aging and cardiovascular fitness: Recent findings and future directions. Journal of Molecular Neuroscience, 24(1), 9–14. doi: 10.1385/JMN:24:1:009.PubMedCrossRefGoogle Scholar
  22. Coppin, A. K., Shumway-Cook, A., Saczynski, J. S., Patel, K. V., Ble, A., Ferrucci, L., et al. (2006). Association of executive function and performance of dual-task physical tests among older adults: Analyses from the InChianti study. Age and Ageing, 35(6), 619–624. doi: 10.1093/ageing/afl107.PubMedCrossRefGoogle Scholar
  23. Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25(6), 295–301.PubMedCrossRefGoogle Scholar
  24. Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–472. doi: 10.1016/j.tins.2007.06.011.PubMedCrossRefGoogle Scholar
  25. Davis, C. L., Tomporowski, P. D., McDowell, J. E., Austin, B. P., Miller, P. H., Yanasak, N. E., et al. (2011). Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychology, 30(1), 91–98. doi: 10.1037/a0021766.PubMedCrossRefGoogle Scholar
  26. De Jager, C., Blackwell, A. D., Budge, M. M., & Sahakian, B. J. (2005). Predicting cognitive decline in healthy older adults. American Journal of Geriatric Psychiatry, 13(8), 735–740. doi: 10.1176/appi.ajgp.13.8.735.PubMedGoogle Scholar
  27. Donnelly, J. E., Greene, J. L., Gibson, C. A., Smith, B. K., Washburn, R. A., Sullivan, D. K., et al. (2009). Physical activity across the curriculum (PAAC): A randomized controlled trial to promote physical activity and diminish overweight and obesity in elementary school children. Preventive Medicine, 49(4), 336–341. doi: 10.1016/j.ypmed.2009.07.022.PubMedCrossRefGoogle Scholar
  28. Drag, L., & Bieliauskas, L. (2010). Contemporary review 2009: Cognitive aging. Journal of Geriatric Psychiatry and Neurology, 23(2), 75–93. doi: 10.1177/0891988709358590.PubMedCrossRefGoogle Scholar
  29. Dwyer, T., Coonan, W. E., Leitch, D. R., Hetzel, B. S., & Baghurst, R. (1983). An investigation of the effects of daily physical activity on the health of primary school students in South Australia. International Journal of Epidemiology, 12(3), 308–313.PubMedCrossRefGoogle Scholar
  30. Eichenbaum, H., & Cohen, N. J. (2001). From conditioning to conscious recollection: Memory systems of the brain. New York: Oxford University Press.Google Scholar
  31. Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., et al. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19(10), 1030–1039. doi: 10.1002/Hipo.20547.PubMedCrossRefGoogle Scholar
  32. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017–3022. doi: 10.1073/pnas.1015950108.CrossRefGoogle Scholar
  33. European Commision: EuroStat: Statistics Explained. (2011). Overweight and obesity—BMI statistics. Retrieved 7 May 2012 from http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Overweight_and_obesity_-_BMI_statistics.
  34. Fabre, C., Chamari, K., Mucci, P., Masse-Biron, J., & Prefaut, C. (2002). Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. International Journal of Sports Medicine, 23(6), 415–421.PubMedCrossRefGoogle Scholar
  35. Flegal, K. M., Carroll, M. D., Ogden, C. L., & Johnson, C. L. (2002). Prevalence and trends in obesity among US adults, 1999–2000. Journal of the American Medical Association, 288(14), 1723–1727.PubMedCrossRefGoogle Scholar
  36. Geda, Y. E., Roberts, R. O., Knopman, D. S., Christianson, T. J. H., Pankratz, V. S., Ivnik, R. J., et al. (2010). Physical exercise, aging, and mild cognitive impairment: A population-based study. Archives of Neurology, 67(1), 80–86. doi: 10.1001/archneurol.2009.297.PubMedCrossRefGoogle Scholar
  37. Goulding, M., Rogers, M., & Smith, S. (2003). Public health and aging: Trends in aging—United States and worldwide. JAMA, 289(11), 1371–1373.CrossRefGoogle Scholar
  38. Greenough, W. T., & Black, J. E. (1992). Induction of brain structure by experience: Substrates for cognitive development. In M. R. Gunnar & C. A. Nelson (Eds.), Developmental behavior neuroscience (Vol. 24, pp. 155–200). Hillsdale: Erlbaum.Google Scholar
  39. Grissom, J. B. (2005). Physical fitness and academic achievement. Journal of Exercise Physiology online, 8(1), 11–25.Google Scholar
  40. Gross, A. L., & Rebok, G. W. (2011). Memory training and strategy use in older adults: Results from the ACTIVE study. Psychology and Aging, 26(3), 503–517. doi: 10.1037/A0022687.PubMedCrossRefGoogle Scholar
  41. Hall, P. A., Fong, G. T., Epp, L. J., & Elias, L. J. (2008). Executive function moderates the intention-behavior link for physical activity and dietary behavior. Psychology and Health, 23(3), 309–326. doi: 10.1080/14768320701212099.CrossRefGoogle Scholar
  42. Hall, P. A., Zehr, C. E., Ng, M., & Zanna, M. P. (2012). Implementation intentions for physical activity in supportive and unsupportive environmental conditions: An experimental examination of intention-behavior consistency. Journal of Experimental Social Psychology, 48(1), 432–436. doi: 10.1016/j.jesp.2011.09.004.CrossRefGoogle Scholar
  43. Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2009). Enrichment effects on cognitive developement: Can the functional capacity of older adults be preserved and enhanced? Psychological Sciences in Public Interest, 9(1), 1–65.Google Scholar
  44. Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental Psychology, 45(1), 114–129. doi: 10.1037/a0014437.PubMedCrossRefGoogle Scholar
  45. Hillman, C. H., Castelli, D. M., & Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine and Science in Sports and Exercise, 37(11), 1967–1974.PubMedCrossRefGoogle Scholar
  46. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65. doi: 10.1038/Nrn2298.PubMedCrossRefGoogle Scholar
  47. Honea, R., Thomas, G. P., Harsha, A., Anderson, H. S., Donnelly, J. E., Brooks, W. M., et al. (2009). Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer’s disease. Alzheimer Disease and Associated Disorders, 23(3), 188.PubMedCrossRefGoogle Scholar
  48. Huh, Y., Yang, E. J., Lee, S. A., Lim, J. Y., Kim, K. W., & Paik, N. J. (2011). Association between executive function and physical performance in older Korean adults: Findings from the Korean longitudinal study on health and aging (KLoSHA). Archives of Gerontology and Geriatrics, 52(3), e156–e161. doi: 10.1016/j.archger.2010.10.018.PubMedCrossRefGoogle Scholar
  49. Jak, A. J. (2011). The impact of physical and mental activity on cognitive aging. Current Topics in Behavioral Neurosciences, 10, 273–291.CrossRefGoogle Scholar
  50. Jonker, C., Geerlings, M. I., & Schmand, B. (2000). Are memory complaints predictive for dementia? A review of clinical and population-based studies. International Journal of Geriatric Psychiatry, 15(11), 983–991.PubMedCrossRefGoogle Scholar
  51. Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 64(3), 356–363. doi: 10.1093/geronb/gbp030.CrossRefGoogle Scholar
  52. Kamijo, K., Pontifex, M., O’Leary, K. C., Scudder, M. R., Wu, C.-T., Castelli, D. M., & Hillman, C. H. (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Developmental Science, 14, 1046–1058 [PMCID: 21884320].Google Scholar
  53. Kimura, K., Obuchi, S., Arai, T., Nagasawa, H., Shiba, Y., Watanabe, S., et al. (2010). The influence of short-term strength training on health-related quality of life and executive cognitive function. Journal of Physiological Anthropology, 29(3), 95–101.PubMedCrossRefGoogle Scholar
  54. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418–419. doi: 10.1038/22682.PubMedCrossRefGoogle Scholar
  55. Lachman, M. E., Neupert, S. D., Bertrand, R., & Jette, A. (2006). The effects of strength training on memory in older adults. Journal of Aging and Physical Activity, 14(1), 59–73.PubMedGoogle Scholar
  56. Larson, E. B., Wang, L., Bowen, J. D., McCormick, W. C., Teri, L., Crane, P., et al. (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Annals of Internal Medicine, 144(2), 73–81.PubMedCrossRefGoogle Scholar
  57. Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). Physical activity and risk of cognitive impairment and dementia in elderly persons. Archives of Neurology, 58(3), 498–504.PubMedCrossRefGoogle Scholar
  58. Lautenschlager, N. T., Cox, K. L., Flicker, L., Foster, J. K., van Bockxmeer, F. M., Xiao, J., et al. (2008). Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease. Journal of the American Medical Association, 300(9), 1027–1037.PubMedCrossRefGoogle Scholar
  59. Lindsay, J., Laurin, D., Verreault, R., Hébert, R., Helliwell, B., Hill, G. B., et al. (2002). Risk factors for Alzheimer’s disease: A prospective analysis from the Canadian study of health and aging. American Journal of Epidemiology, 156(5), 445–453.PubMedCrossRefGoogle Scholar
  60. Liu-Ambrose, T., Davis, J., Nagamatsu, L., Hsu, C., Katarynych, L., & Khan, K. (2010). Changes in executive functions and self-efficacy are independently associated with improved usual gait speed in older women. BMC Geriatrics, 10(1), 1–25. doi: 10.1186/1471-2318-10-25.CrossRefGoogle Scholar
  61. Marks, B., Katz, L., Styner, M., & Smith, J. (2011). Aerobic fitness and obesity: Relationship to cerebral white matter integrity in the brain of active and sedentary older adults. British Journal of Sports Medicine, 45(15), 1208–1215. doi: 10.1136/bjsm.2009.068114.PubMedCrossRefGoogle Scholar
  62. McAuley, E., Kramer, A. F., & Colcombe, S. J. (2004). Cardiovascular fitness and neurocognitive function in older adults: A brief review. Brain, Behavior, and Immunity, 18(3), 214–220.PubMedCrossRefGoogle Scholar
  63. McAuley, E., Mullen, S. P., Szabo, A. N., White, S. M., Wójcicki, T. R., Mailey, E. L., et al. (2011). Self-regulatory processes and exercise adherence in older adults: Executive function and self-efficacy effects. American Journal of Preventive Medicine, 41(3), 284–290. doi: 10.1016/j.amepre.2011.04.014.PubMedCrossRefGoogle Scholar
  64. Miller, D. I., Taler, V., Davidson, P. S., & Messier, C. (2012). Measuring the impact of exercise on cognitive aging: Methodological issues. Neurobiology of Aging, 33(3), e29–e43. doi: 10.1016/j.neurobiolaging.2011.02.020.PubMedCrossRefGoogle Scholar
  65. Ogden, C. L., Carroll, M. D., Kit, B. K., & Flegal, K. M. (2012). Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. Journal of the American Medical Association, 307(5), 483–490. doi: 10.1001/Jama.2012.40.PubMedCrossRefGoogle Scholar
  66. Pleis, J. R., & Lucas, J. W. (2009). Summary health statistics for US adults: National Health Interview Survey, 2007. Vital and health statistics. Series 10, Data from the National Health Survey, (240), 1.Google Scholar
  67. Pontifex, M. B., Raine, L. B., Johnson, C. R., Chaddock, L., Voss, M. W., Cohen, N. J., et al. (2011). Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. Journal of Cognitive Neuroscience, 23(6), 1332–1345. doi: 10.1162/jocn.2010.21528.PubMedCrossRefGoogle Scholar
  68. Rosano, C., Sigurdsson, S., Siggeirsdottir, K., Phillips, C. L., Garcia, M., Jonsson, P. V., et al. (2010). Magnetization transfer imaging, white matter hyperintensities, brain atrophy and slower gait in older men and women. Neurobiology of Aging, 31(7), 1197–1204. doi: 10.1016/j.neurobiolaging.2008.08.004.PubMedCrossRefGoogle Scholar
  69. Sallis, J. F., McKenzie, T. L., Kolody, B., Lewis, M., Marshall, S., & Rosengard, P. (1999). Effects of health-related physical education on academic achievement: SPARK. Research Quarterly for Exercise and Sport, 70(2), 127–134.PubMedCrossRefGoogle Scholar
  70. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428. doi: 10.1037/0033-295X.103.3.403.PubMedCrossRefGoogle Scholar
  71. Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., et al. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239–252. doi: 10.1097/PSY.0b013e3181d14633.PubMedCrossRefGoogle Scholar
  72. Sturman, M. T., Morris, M. C., Mendes de Leon, C. F., Bienias, J. L., Wilson, R. S., & Evans, D. A. (2005). Physical activity, cognitive activity, and cognitive decline in a biracial community population. Archives of Neurology, 62(11), 1750–1754. doi: 10.1001/archneur.62.11.1750.PubMedCrossRefGoogle Scholar
  73. Szabo, A. N., McAuley, E., Erickson, K. I., Voss, M., Prakash, R. S., Mailey, E. L., et al. (2011). Cardiorespiratory fitness, hippocampal volume, and frequency of forgetting in older adults. Neuropsychology, 25(5), 545–553. doi: 10.1037/a0022733.PubMedCrossRefGoogle Scholar
  74. Thomas, A. G., Dennis, A., Bandettini, P. A., & Johansen-Berg, H. (2012). The effects of aerobic activity on brain structure. Frontiers in Psychology, 3, 86. doi: 10.3389/fpsyg.2012.00086.PubMedCrossRefGoogle Scholar
  75. Tomporowski, P. D., Davis, C. L., Miller, P. H., & Naglieri, J. A. (2008). Exercise and children’s intelligence, cognition, and academic achievement. Educational Psychology Review, 20(2), 111–131. doi: 10.1007/s10648-007-9057-0.PubMedCrossRefGoogle Scholar
  76. van Uffelen, J. G. Z., Paw, M. J. M. C. A., Hopman-Rock, M., & van Mechelen, W. (2008). The effects of exercise on cognition in older adults with and without cognitive decline: A systematic review. Clinical Journal of Sport Medicine, 18(6), 486–500.PubMedCrossRefGoogle Scholar
  77. Vaynman, S., & Gomez-Pinilla, F. (2006). Revenge of the “sit”: How lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscience Research, 84(4), 699–715.PubMedCrossRefGoogle Scholar
  78. Voss, M. W., Nagamatsu, L. S., Liu-Ambrose, T., & Kramer, A. F. (2011a). Exercise, brain, and cognition across the life span. Journal of Applied Physiology, 111(5), 1505–1513. doi: 10.1152/japplphysiol.00210.2011.PubMedCrossRefGoogle Scholar
  79. Voss, M. W., Nagamatsu, L. S., Liu-Ambrose, T., & Kramer, A. F. (2011b). Exercise, brain, and cognition across the lifespan. Journal of Applied Physiology, 111, 1505–1513.PubMedCrossRefGoogle Scholar
  80. Voss, M. W., Prakash, R. S., Erickson, K. I., Basak, C., Chaddock, L., Kim, J. S., et al. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2, 32. doi: 10.3389/fnagi.2010.00032.PubMedGoogle Scholar
  81. Weuve, J., Kang, J. H., Manson, J. E., Breteler, M. M., Ware, J. H., & Grodstein, F. (2004). Physical activity, including walking, and cognitive function in older women. Journal of the American Medical Association, 292(12), 1454–1461. doi: 10.1001/jama.292.12.1454.PubMedCrossRefGoogle Scholar
  82. Willis, S. L., & Schaie, K. W. (2005). Cognitive trajectories in midlife and cognitive functioning in old age. In S. L. Willis & M. Martin (Eds.), Middle adulthood: A lifespan perspective (pp. 243–276). London: Sage Publication.CrossRefGoogle Scholar
  83. Wilson, R. S., Bennett, D. A., Bienias, J. L., Aggarwal, N. T., Mendes De Leon, C. F., Morris, M. C., et al. (2002). Cognitive activity and incident AD in a population-based sample of older persons. Neurology, 59(12), 1910–1914.PubMedCrossRefGoogle Scholar
  84. Yaffe, K., Barnes, D., Nevitt, M., Lui, L. Y., & Covinsky, K. (2001). A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Archives of Internal Medicine, 161(14), 1703–1708.PubMedCrossRefGoogle Scholar
  85. Yogev Seligmann, G., Hausdorff, J. M., & Giladi, N. (2008). The role of executive function and attention in gait. Movement Disorders, 23(3), 329–342. doi: 10.1002/mds.21720.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Edward McAuley
    • 1
    Email author
  • Sean P. Mullen
    • 1
  • Charles H. Hillman
    • 1
  1. 1.University of Illinois at Urbana ChampaignUrbanaUSA

Personalised recommendations