Brain Functions Modulating Redistribution of Natural Killer Cells Accompanying Cognitive Appraisal of Acute Stress



Acute stress increases the number of natural killer (NK) cells, which plays a critical role in innate immunity, in peripheral circulation within several minutes. This phenomenon is called redistribution of NK cells and has been thought to reflect facilitation of preventive defense. Redistribution of NK cells is not a stereotyped response but is sensitive to cognitive appraisals of stressors, and thus might be under control by the brain. We have explored neural mechanisms of the top-down modulation of NK cell distribution by the brain using simultaneous measurement of brain activity by positron emission tomography and the number of NK cells in blood during cognitive acute stress tasks where stressor controllability and cognitive flexibility were manipulated. Results suggested that the dorsolateral prefrontal and orbitofrontal cortices might be involved in appraisals of stressors, and modulate NK cell redistribution via the anterior cingulate cortex and the vagus nerve.


Natural Killer Cell Heart Rate Variability Vagus Nerve Acute Stress Reversal Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adler, K. A., Mills, P. J., Dimsdale, J. E., Ziegler, M. G., Patterson, T. L., Sloan, R. P., et al. (2002). Temporal stability of acute stress-induced changes in leukocyte subsets and cellular adhesion molecules in older adults. Brain, Behavior, and Immunity, 16, 262–274.PubMedCrossRefGoogle Scholar
  2. Benschop, R. J., Oostveen, F. G., Heijnen, C. J., & Ballieux, R. E. (1993). Beta 2-adrenergic stimulation causes detachment of natural killer cells from cultured endothelium. European Journal of Immunology, 23, 3242–3247.PubMedCrossRefGoogle Scholar
  3. Benschop, R. J., Nijkamp, F. P., Ballieux, R. E., & Heijnen, C. J. (1994). The effects of beta-adrenoceptor stimulation on adhesion of human natural killer cells to cultured endothelium. British Journal of Pharmacology, 113, 1311–1316.PubMedCrossRefGoogle Scholar
  4. Benschop, R. J., Rodriguez-Feuerhahn, M., & Schedlowski, M. (1996). Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain, Behavior, and Immunity, 10, 77–91.PubMedCrossRefGoogle Scholar
  5. Benschop, R. J., Geenen, R., Mills, P. J., Naliboff, B. D., Kiecolt-Glaser, J. K., Herbert, T. B., et al. (1998). Cardiovascular and immune responses to acute psychological stress in young and old women: a meta-analysis. Psychosomatic Medicine, 60, 290–296.PubMedGoogle Scholar
  6. Bevilacqua, M. P. (1993). Endothelial-leukocyte adhesion molecules. Annual Review of Immunology, 11, 767–804.PubMedCrossRefGoogle Scholar
  7. Blascovich, J., Mendes, W. B., Hunter, S. B., & Salomon, K. (1999). Social “facilitation” as challenge and threat. Journal of Personality and Social Psychology, 77, 68–77.PubMedCrossRefGoogle Scholar
  8. Bosch, J. A., Berntson, G. G., Cacioppo, J. T., & Marucha, P. T. (2005). Differential mobilization of functionally distinct natural killer subsets during acute psychologic stress. Psychosomatic Medicine, 67, 366–375.PubMedCrossRefGoogle Scholar
  9. Cooper, M. A., Fehniger, T. A., & Caligiuri, M. A. (2001). The biology of human natural killer-cell subsets. Trends in Immunology, 22, 633–640.PubMedCrossRefGoogle Scholar
  10. Crary, B., Hauser, S. L., Borysenko, M., Kutz, I., Hoban, C., Ault, K. A., et al. (1983). Epinephrine-induced changes in the distribution of lymphocyte subsets in peripheral blood of humans. Journal of Immunology, 131, 1178–1181.Google Scholar
  11. Dantzer, R., Konsman, J. P., Bluthé, R. M., & Kelley, K. W. (2000). Neural and humoral pathways of communication from the immune system to the brain: Parallel or convergent? Autonomous Neuroscience, 85, 60–65.CrossRefGoogle Scholar
  12. Dhabhar, F. S. (1998). Stress-induced enhancement of cell-mediated immunity. Annals of the New York Academy of Sciences, 840, 359–372.PubMedCrossRefGoogle Scholar
  13. Frey, M., Packianathan, N. B., Fehniger, T. A., Ross, M. E., Wang, W. C., Stewart, C. C., et al. (1998). Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. Journal of Immunology, 16, 400–408.Google Scholar
  14. Gaab, J., Blattler, N., Menzi, T., Pabst, B., Stoyer, S., & Ehlert, U. (2003). Randomized controlled evaluation of the effects of cognitive-behavioral stress management on cortisol responses to acute stress in healthy subjects. Psychoneuroendocrinology, 28, 767–779.PubMedCrossRefGoogle Scholar
  15. Haddad, J. J. (2008). On the mechanisms and putative pathways involving neuroimmune interactions. Biochemical and Biophysical Research Communications, 370, 531–535.PubMedCrossRefGoogle Scholar
  16. Isowa, T., Ohira, H., & Murashima, S. (2006). Immune, endocrine and cardiovascular responses to controllable and uncontrollable acute stress. Biological Psychology, 71, 202–213.PubMedCrossRefGoogle Scholar
  17. Karasek, R., Brisson, C., Kawakami, N., Houtman, I., Bongers, P., & Amick, B. (1998). The Job Content Questionnaire (JCQ): An instrument for internationally comparative assessments of psychosocial job characteristics. Journal of Occupational Health Psychology, 3, 322–355.PubMedCrossRefGoogle Scholar
  18. Kehagia, A. A., Murray, G. K., & Robbins, T. W. (2010). Learning and cognitive flexibility: Frontostriatal function and monoaminergic modulation. Current Opinion in Neurobiology, 20, 199–204.PubMedCrossRefGoogle Scholar
  19. Kiecolt-Glaser, J. K., McGuire, L., Robles, T. F., & Glaser, R. (2002). Psychoneuroimmunology and psychosomatic medicine: Back to the future. Psychosomatic Medicine, 64, 15–28.PubMedGoogle Scholar
  20. Kimura, K., Isowa, T., Ohira, H., & Murashima, S. (2005). Temporal variation of acute stress responses in sympathetic nervous and immune systems. Biological Psychology, 70, 131–139.PubMedCrossRefGoogle Scholar
  21. Kimura, K., Ohira, H., Isowa, T., Matsunaga, M., & Murashima, S. (2007). Regulation of lymphocytes redistribution via autonomic nervous activity during stochastic learning. Brain, Behavior, and Immunity, 21, 921–934.PubMedCrossRefGoogle Scholar
  22. Kimura, K., Isowa, T., Matsunaga, M., Murashima, S., & Ohira, H. (2008). The temporal redistribution pattern of NK cells under acute stress based on CD62L adhesion molecule expression. International Journal of Psychophysiology, 70, 63–69.PubMedCrossRefGoogle Scholar
  23. Lane, R. D., McRae, K., Reiman, E. M., Chen, K., Ahern, G. L., & Thayer, J. F. (2009). Neural correlates of heart rate variability during emotion. NeuroImage, 44, 213–222.PubMedCrossRefGoogle Scholar
  24. Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. New York: Springer.Google Scholar
  25. Levy, R., & Goldman-Rakic, P. S. (2000). Segregation of working memory functions within the dorsolateral prefrontal cortex. Experimental Brain Research, 133, 23–32.CrossRefGoogle Scholar
  26. Madden, K. S., Sanders, V. M., & Felten, D. L. (1995). Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annual Review of Pharmacology and Toxicology, 35, 417–448.PubMedCrossRefGoogle Scholar
  27. Maier, S. F., & Watkins, L. R. (2005). Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neuroscience and Biobehavioral Reviews, 29, 829–841.PubMedCrossRefGoogle Scholar
  28. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.PubMedCrossRefGoogle Scholar
  29. O’Doherty, J., Critchley, H., Deichmann, R., & Dolan, R. J. (2003). Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. Journal of Neuroscience, 23, 7931–7939.PubMedGoogle Scholar
  30. Ohira, H., (2012). Brain functions regulating redistribution of natural killer cells accompanying appraisals of stressors. Paper presented at the 12th International Congress of Behavioral Medicine. August, Budapest, Hungary.Google Scholar
  31. Ohira, H., Isowa, T., Nomura, M., Ichikawa, N., Kimura, K., Miyakoshi, M., et al. (2008). Imaging brain and immune association accompanying cognitive appraisal of an acute stressor. Neuroimage, 39, 500–514.PubMedCrossRefGoogle Scholar
  32. Ohira, H., Fukuyama, S., Kimura, K., Nomura, M., Isowa, T., Ichikawa, N., et al. (2009). Regulation of natural killer cell redistribution by prefrontal cortex during stochastic learning. Neuroimage, 47, 897–907.PubMedCrossRefGoogle Scholar
  33. Ohira, H., Ichikawa, N., Nomura, M., Isowa, T., Kimura, K., Kanayama, N., et al. (2010). Brain and autonomic association accompanying stochastic decision-making. Neuroimage, 49, 1024–1037.PubMedCrossRefGoogle Scholar
  34. Ohira, H., Matsunaga, M., Kimura, K., Murakami, H., Osumi, T., Isowa, T., et al. (2011). Chronic stress modulates neural and cardiovascular responses during reversal learning. Neuroscience, 193, 193–204.PubMedCrossRefGoogle Scholar
  35. Peters, M. L., Godaert, G. L., Ballieux, R. E., Brosschot, J. F., Sweep, F. C., Swinkels, L. M., et al. (1999). Immune responses to experimental stress: effects of mental effort and uncontrollability. Psychosomatic Medicine, 61, 513–524.PubMedGoogle Scholar
  36. Peters, M. L., Godaert, G. L., Ballieux, R. E., & Heijnen, C. J. (2003). Moderation of physiological stress responses by personality traits and daily hassles: less flexibility of immune system responses. Biological Psychology, 65, 21–48.PubMedCrossRefGoogle Scholar
  37. Roberts, A. C. (2006). Primate orbitofrontal cortex and adaptive behaviour. Trends Cognition Science, 10, 83–90.CrossRefGoogle Scholar
  38. Saul, J. P., Rea, R. F., Eckberg, D. L., Berger, R. D., & Cohen, R. J. (1990). Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity. American Journal of Physiology, 258, 713–721.Google Scholar
  39. Thayer, J. F., & Brosschot, J. F. (2005). Psychosomatics and psychopathology: Looking up and down from the brain. Psychoneuroendocrinology, 30, 1050–1058.PubMedCrossRefGoogle Scholar
  40. Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J. 3rd, Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neuroscience Biobehaviour Review 36, 747–756.Google Scholar
  41. Tracey, K. J. (2009). Reflex control of immunity. Nature Reviews Immunology, 9, 418–428.PubMedCrossRefGoogle Scholar
  42. van Noordt, S. J., & Segalowitz, S. J. (2012). Performance monitoring and the medial prefrontal cortex: a review of individual differences and context effects as a window on self-regulation. Frontiers Human Neuroscience, 6, 197.Google Scholar
  43. Weber, C. S., Thayer, J. F., Rudat, M., Wirtz, P. H., Zimmermann-Viehoff, F., Thomas, A., et al. (2010). Low vagal tone is associated with impaired post stress recovery of cardiovascular, endocrine, and immune markers. European Journal of Applied Physiology, 109, 201–211.PubMedCrossRefGoogle Scholar
  44. Yamakawa, K., Matsunaga, M., Isowa, T., Kimura, K., Kasugai, K., Yoneda, M., et al. (2009). Transient responses of inflammatory cytokines in acute stress. Biological Psychology, 82, 25–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PsychologyNagoya UniversityNagoyaJapan

Personalised recommendations