Skip to main content

Evoked and Induced Gamma-Frequency Oscillations in Autism

  • Chapter
  • First Online:
Imaging the Brain in Autism

Abstract

Recent studies by our group have characterized the neuropathology of autism as that of a minicolumnopathy. Postmortem studies using computerized image analysis of pyramidal cell arrays have found that the brains of autistic individuals have smaller minicolumns with most of the decrease stemming from a reduction in its peripheral neuropil space, with little, if any reduction, in their core space. This finding has been reproduced using different techniques (e.g., GLI) and independent populations (Casanova et al. 2002a, b, c, 2006a, b). It is now known that minicolumnar width reduction in autism spans supragranular, granular, and infragranular layers (Casanova et al. 2010). The most parsimonious explanation for the findings is the possible abnormality of an anatomical element in common to all layers. The peripheral neuropil space of minicolumns provides, among other things, for inhibitory elements distributed throughout all of its laminae. This is the so-called shower curtain of inhibition of the minicolumn described by Szentágothai and Arbib (1975). Our findings therefore suggest a deficit within the inhibitory elements that surround the cell minicolumn (Casanova et al. 2006a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baron-Cohen S, Belmonte MK (2005) Autism: a window onto the development of the social and the analytic brain. Annu Rev Neurosci 28:109–126

    PubMed  CAS  Google Scholar 

  • Baruth JM, Casanova MF, El-Baz AS, Horrell T, Mathai G, Sears L, Sokhadze EM (2010) Low-­frequency repetitive transcranial magnetic stimulation modulates evoked-gamma frequency oscillations in autism spectrum disorder. J Neurother 14:179–194

    PubMed  Google Scholar 

  • Baruth JM, Williams EL, Sokhadze EM, El-Baz AS, Casanova MF (2011) Beneficial effects of repetitive transcranial magnetic stimulation (rTMS) on behavioral outcome measures in autism spectrum disorder. Autism Sci Dig 1:52–57

    Google Scholar 

  • Başar E, Schürmann M, Başar-Eroglu C, Demiralp T (2001) Selectively distributed gamma band system of the brain. Int J Psychophysiol 39:129–135

    PubMed  Google Scholar 

  • Bastiaansen MCM, Brunia CHM (2001) Anticipatory attention: an event-related desynchronization approach. Int J Psychophysiol 43:91–107

    PubMed  CAS  Google Scholar 

  • Bastiaansen MCM, Hagoort P (2003) Event-induced theta responses as a window on the dynamics of memory. Cortex 39:967–992

    PubMed  Google Scholar 

  • Bastiaansen MCM, van Berkum JJA, Hagoort P (2002a) Event-related theta power increases in the human EEG during online sentence processing. Neurosci Lett 323:13–16

    PubMed  CAS  Google Scholar 

  • Bastiaansen MCM, van Berkum JJA, Hagoort P (2002b) Syntactic Processing Modulates the θ Rhythm of the Human EEG. Neuroimage 17:1479–1492

    PubMed  Google Scholar 

  • Bastiaansen MCM, van der Linden M, ter Keurs M, Dijkstra T, Hagoort P (2005) Theta responses are involved in lexical-semantic retrieval during language processing. J Cogn Neurosci 17:530–541

    PubMed  Google Scholar 

  • Belmonte MK, Yurgelun-Todd DA (2003a) Functional anatomy of impaired selective attention and compensatory processing in autism. Cogn Brain Res 17:651–664

    Google Scholar 

  • Belmonte MK, Yurgelun-Todd D (2003b) Anatomic dissociation of selective and suppressive processes in visual attention. Neuroimage 19:180–189

    PubMed  Google Scholar 

  • Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ (2004a) Autism and abnormal development of brain connectivity. J Neurosci 24:9228–9231

    PubMed  CAS  Google Scholar 

  • Belmonte MK, Cook EH, Anderson GM, Rubenstein JLR, Greenough WT, Beckel-Mitchener A, Courchesne E, Boulanger LM, Powell SB, Levitt PR, Perry EK, Y-h J, DeLorey TM, Tierney E (2004b) Autism as a disorder of neural information processing: directions for research and targets for therapy. Mol Psychiatry 9:646–663

    PubMed  CAS  Google Scholar 

  • Benasich AA, Gou Z, Choudhury N, Harris KD (2008) Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behav Brain Res 195:215–222

    PubMed  Google Scholar 

  • Bertrand O, Tallon-Baudry C (2000) Oscillatory gamma activity in humans: a possible role for object representation. Int J Psychophysiol 38:211–223

    PubMed  CAS  Google Scholar 

  • Böttger D, Herrmann CS, von Cramon DY (2002) Amplitude differences of evoked alpha and gamma oscillations in two different age groups. Int J Psychophysiol 45:245–251

    PubMed  Google Scholar 

  • Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5:26–36

    PubMed  Google Scholar 

  • Brock J, Brown CC, Boucher J, Rippon G (2002) The temporal binding deficit hypothesis of autism. Dev Psychopathol 14:209–224

    PubMed  Google Scholar 

  • Brown CC (2005) EEG in autism: is there just too much going on in there? In: Casanova MF (ed) Recent developments in autism research. Nova Biomedical, New York, pp 109–126

    Google Scholar 

  • Brown CC, Gruber T, Boucher J, Rippon G, Brock J (2005) Gamma abnormalities during perception of illusory figures in autism. Cortex 41:364–376

    PubMed  Google Scholar 

  • Burgess AP, Ali L (2002) Functional connectivity of gamma EEG activity is modulated at low frequency during conscious recollection. Int J Psychophysiol 46:91–100

    PubMed  Google Scholar 

  • Casanova MF (2006) Neuropathological and genetic findings in autism: the significance of a putative minicolumnopathy. Neuroscientist 12:435–441

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Brown C (2002a) Clinical and macroscopic correlates of minicolumnar pathology in autism. J Child Neurol 17:692–695

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002b) Minicolumnar pathology in autism. Neurology 58:428–432

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002c) Neuronal density and architecture (Gray Level Index) in the brains of autistic patients. J Child Neurol 17:515–521

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Gomez J (2003) Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist 9:496–507

    PubMed  Google Scholar 

  • Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Schmitz C (2006a) Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clin Neurosci Res 6:127–133

    Google Scholar 

  • Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Trippe J, Stone J, Schmitz C (2006b) Minicolumnar abnormalities in autism. Acta Neuropathol 112:287–303

    PubMed  Google Scholar 

  • Casanova MF, Trippe J, Tillquist C, Switala AE (2009) Morphometric variability of minicolumns in the striate cortex of Homo sapiens, Macaca mulatta, and Pan troglodytes. J Anat 214:226–234

    PubMed  Google Scholar 

  • Casanova MF, El-Baz AS, Vanbogaert E, Narahari P, Switala A (2010) A topographic study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae. Brain Pathol 20:451–458

    PubMed  Google Scholar 

  • Casanova MF, Baruth JM, El-Baz AS, Tasman A, Sears L, Sokhadze EM (2012) Repetitive transcranial magnetic stimulation (RTMS) modulates event-related potential (ERP) indices of attention in autism. Transl Neurosci 3:170–180

    Google Scholar 

  • Dawson G, Klinger LG, Panagiotides H, Lewy A, Castelloe P (1995) Subgroups of autistic children based on social behavior display distinct patterns of brain activity. J Abnorm Child Psychol 23:569–583

    PubMed  CAS  Google Scholar 

  • Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15:191–199

    PubMed  Google Scholar 

  • Fell J, Klaver P, Lehnertz K, Grunwald T, Schaller C, Elger CE, Fernández G (2001) Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat Neurosci 4:1259–1264

    PubMed  CAS  Google Scholar 

  • Fell J, Fernández G, Klaver P, Elger CE, Fries P (2003) Is synchronized neuronal gamma activity relevant for selective attention? Brain Res Rev 42:265–272

    PubMed  Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563

    PubMed  CAS  Google Scholar 

  • Frith U, Happé F (1994) Autism: beyond “theory of mind”. Cognition 50:115–132

    PubMed  CAS  Google Scholar 

  • Grice SJ, Spratling MW, Karmiloff-Smith A, Halit H, Csibra G, de Haan M, Johnson MH (2001) Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport 12:2697–2700

    PubMed  CAS  Google Scholar 

  • Grothe B, Klump GM (2000) Temporal processing in sensory systems. Curr Opin Neurobiol 10:467–473

    PubMed  CAS  Google Scholar 

  • Gruber T, Keil A, Müller MM (2001) Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. Neurosci Lett 316:29–32

    PubMed  CAS  Google Scholar 

  • Hald LA, Bastiaansen MCM, Hagoort P (2006) EEG theta and gamma responses to semantic violations in online sentence processing. Brain Lang 96:90–105

    PubMed  Google Scholar 

  • Happé F, Frith U (2006) The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord 36:5–25

    PubMed  Google Scholar 

  • Herrmann CS, Demiralp T (2005) Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 116:2719–2733

    PubMed  CAS  Google Scholar 

  • Herrmann CS, Knight RT (2001) Mechanisms of human attention: event-related potentials and oscillations. Neurosci Biobehav Rev 25:465–476

    PubMed  CAS  Google Scholar 

  • Herrmann CS, Mecklinger A (2000) Magnetoencephalographic responses to illusory figures: early evoked gamma is affected by processing of stimulus features. Int J Psychophysiol 38:265–281

    PubMed  CAS  Google Scholar 

  • Herrmann CS, Mecklinger A (2001) Gamma activity in human EEG is related to highspeed memory comparisons during object selective attention. Vis Cogn 8:593–608

    Google Scholar 

  • Herrmann CS, Mecklinger A, Pfeifer E (1999) Gamma responses and ERPs in a visual classification task. Clin Neurophysiol 110:636–642

    PubMed  CAS  Google Scholar 

  • Herrmann CS, Munk MHJ, Engel AK (2004) Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8:347–355

    PubMed  Google Scholar 

  • Hoechstetter K, Bornfleth H, Weckesser D, Ille N, Berg P, Scherg M (2004) BESA source coherence: a new method to study cortical oscillatory coupling. Brain Topogr 16:233–238

    PubMed  Google Scholar 

  • Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15:1395–1399

    PubMed  Google Scholar 

  • Jensen O, Kaiser J, Lachaux J-P (2007) Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 30:317–324

    PubMed  CAS  Google Scholar 

  • Kahana MJ (2006) The cognitive correlates of human brain oscillations. J Neurosci 26: 1669–1672

    PubMed  CAS  Google Scholar 

  • Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR (1999) Human theta oscillations exhibit task dependence during virtual maze navigation. Nature 399:781–784

    PubMed  CAS  Google Scholar 

  • Kaiser J (2003) Induced gamma-band activity and human brain function. Neuroscientist 9: 475–484

    PubMed  Google Scholar 

  • Kanizsa G (1976) Subjective contours. Sci Am 234:48–52

    PubMed  CAS  Google Scholar 

  • Keil A, Müller MM, Ray WJ, Gruber T, Elbert T (1999) Human gamma band activity and perception of a Gestalt. J Neurosci 19:7152–7161

    PubMed  CAS  Google Scholar 

  • Keil A, Gruber T, Müller MM (2001) Functional correlates of macroscopic high-frequency brain activity in the human visual system. Neurosci Biobehav Rev 25:527–534

    PubMed  CAS  Google Scholar 

  • Kemner C, Verbaten MN, Cuperus JM, Camfferman G, van Engeland H (1994) Visual and somatosensory event-related brain potentials in autistic children and three different control groups. Electroencephalogr Clin Neurophysiol 92:225–237

    PubMed  CAS  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195

    PubMed  CAS  Google Scholar 

  • Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends Cogn Sci 8:204–210

    PubMed  Google Scholar 

  • Mann EO, Paulsen O (2007) Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci 30:343–349

    PubMed  CAS  Google Scholar 

  • Minshew NJ, Goldstein G, Siegel DJ (1997) Neuropsychologic functioning in autism: profile of a complex information processing disorder. J Int Neuropsychol Soc 3:303–316

    PubMed  CAS  Google Scholar 

  • Morgan B, Maybery M, Durkin K (2003) Weak central coherence, poor joint attention, and low verbal ability: independent deficits in early autism. Dev Psychol 39:646–656

    PubMed  Google Scholar 

  • Mottron L, Burack JA, Iarocci G, Belleville S, Enns JT (2003) Locally oriented perception with intact global processing among adolescents with high-functioning autism: evidence from multiple paradigms. J Child Psychol Psychiatry 44:904–913

    PubMed  Google Scholar 

  • Mountcastle VB (2003) Introduction: computation in cortical columns. Cereb Cortex 13:2–4

    PubMed  Google Scholar 

  • Müller MM, Gruber T (2001) Induced gamma-band responses in the human EEG are related to attentional information processing. Vis Cogn 8:579–592

    Google Scholar 

  • Müller MM, Bosch J, Elbert T, Kreiter AK, Valdés Sosa MJ, Valdés Sosa PA, Rockstroh B (1996) Visually induced gamma-band responses in human electroencephalographic activity—a link to animal studies. Exp Brain Res 112:96–102

    PubMed  Google Scholar 

  • Müller MM, Gruber T, Keil A (2000) Modulation of induced gamma band activity in the human EEG by attention and visual information processing. Int J Psychophysiol 38:283–299

    PubMed  Google Scholar 

  • Murias M, Webb SJ, Greenson J, Dawson G (2007) Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry 62:270–273

    PubMed  Google Scholar 

  • Nakatani C, Ito J, Nikolaev AR, Gong P, van Leeuwen C (2005) Phase synchronization analysis of EEG during attentional blink. J Cogn Neurosci 17:1969–1979

    PubMed  Google Scholar 

  • Pavlova M, Birbaumer N, Sokolov A (2006) Attentional modulation of cortical neuromagnetic gamma response to biological movement. Cereb Cortex 16:321–327

    PubMed  Google Scholar 

  • Penolazzi B, Angrilli A, Job R (2009) Gamma EEG activity induced by semantic violation during sentence reading. Neurosci Lett 465:74–78

    PubMed  CAS  Google Scholar 

  • Petsche H, Etlinger SC (1998) EEG and thinking: power and coherence analysis of cognitive processes. Verlag der Österreichischen Akademie der Wissenschaften, Wien

    Google Scholar 

  • Pfurtscheller G, Aranibar A (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 42:817–826

    PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    PubMed  CAS  Google Scholar 

  • Plaisted K, Saksida L, Alcántara J, Weisblatt E (2003) Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception. Philos Trans R Soc Lond B Biol Sci 358:375–386

    PubMed  Google Scholar 

  • Pulvermüller F, Lutzenberger W, Preissl H (1999) Nouns and verbs in the intact brain: evidence from event-related potentials and high-frequency cortical responses. Cereb Cortex 9:497–506

    PubMed  Google Scholar 

  • Rippon G, Brock J, Brown CC, Boucher J (2007) Disordered connectivity in the autistic brain: challenges for the ‘new psychophysiology’. Int J Psychophysiol 63:164–172

    PubMed  Google Scholar 

  • Rodriguez E, George N, Lachaux J-P, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397:430–433

    PubMed  CAS  Google Scholar 

  • Rubenstein JLR, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2:255–267

    PubMed  CAS  Google Scholar 

  • Schack B, Weiss S, Rappelsberger P (2003) Cerebral information transfer during word processing: where and when does it occur and how fast is it? Hum Brain Mapp 19:18–36

    PubMed  Google Scholar 

  • Shibata T, Shimoyama I, Ito T, Abla D, Iwasa H, Koseki K, Yamanouchi N, Sato T, Nakajima Y (1999) Attention changes the peak latency of the visual gamma-band oscillation of the EEG. Neuroreport 10:1167–1170

    PubMed  CAS  Google Scholar 

  • Singer W (1999) Neural synchrony: a versatile code for the definition of relations? Neuron 24:49–65

    PubMed  CAS  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    PubMed  CAS  Google Scholar 

  • Sohal VS (2012) Insights into cortical oscillations arising from optogenetic studies. Biol Psychiatry 71:1039–1045

    PubMed  Google Scholar 

  • Sokhadze EM, El-Baz AS, Baruth J, Mathai G, Sears L, Casanova MF (2009a) Effects of low-­frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J Autism Dev Disord 39:619–634

    PubMed  Google Scholar 

  • Sokhadze EM, Baruth JM, Tasman A, Sears L, Mathai G, El-Baz AS, Casanova MF (2009b) Event-related potential study of novelty processing abnormalities in autism. Appl Psychophysiol Biofeedback 34:37–51

    PubMed  Google Scholar 

  • Stroganova TA, Nygren G, Tsetlin MM, Posikera IN, Gillberg C, Elam M, Orekhova EV (2007) Abnormal EEG lateralization in boys with autism. Clin Neurophysiol 118:1842–1854

    PubMed  Google Scholar 

  • Szentágothai J, Arbib MA (1975) Conceptual models of neural organization. MIT Press, Cambridge, MA

    Google Scholar 

  • Tallon-Baudry C (2003) Oscillatory synchrony and human visual cognition. J Physiol Paris 97:355–363

    PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162

    PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16:4240–4249

    PubMed  CAS  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced γ-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18:4244–4254

    PubMed  CAS  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Hénaff M-A, Isnard J, Fischer C (2005) Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex 15:654–662

    PubMed  Google Scholar 

  • Varela FJ, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    PubMed  CAS  Google Scholar 

  • von Stein A, Rappelsberger P, Sarnthein J, Petsche H (1999) Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb Cortex 9:137–150

    Google Scholar 

  • Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7:553–559

    PubMed  Google Scholar 

  • Weiss S, Müller HM (2003) The contribution of EEG coherence to the investigation of language. Brain Lang 85:325–343

    PubMed  Google Scholar 

  • Weiss S, Rappelsberger P (1996) EEG coherence within the 13–18 Hz band as a correlate of a distinct lexical organisation of concrete and abstract nouns in humans. Neurosci Lett 209:17–20

    PubMed  CAS  Google Scholar 

  • Weiss S, Rappelsberger P (2000) Long-range EEG synchronization during word encoding correlates with successful memory performance. Cogn Brain Res 9:299–312

    CAS  Google Scholar 

  • Weiss S, Müller HM, King JW, Kutas M, Rappelsberger P (2001) EEG-coherence analysis of naturally spoken English relative clauses. Brain Topogr 13:317

    Google Scholar 

  • Welchew DE, Ashwin C, Berkouk K, Salvador R, Suckling J, Baron-Cohen S, Bullmore E (2005) Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biol Psychiatry 57:991–998

    PubMed  Google Scholar 

  • Whittington MA, Traub RD, Kopell N, Ermentrout GB, Buhl EH (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38:315–336 Biography

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estate M. Sokhadze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this chapter

Cite this chapter

Casanova, M.F., Baruth, J., El-Baz, A.S., Sokhadze, G.E., Hensley, M., Sokhadze, E.M. (2013). Evoked and Induced Gamma-Frequency Oscillations in Autism. In: Casanova, M., El-Baz, A., Suri, J. (eds) Imaging the Brain in Autism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6843-1_5

Download citation

Publish with us

Policies and ethics