Advertisement

ART: Clinical and Laboratory Aspects

  • Beth Plante
  • Gary D. Smith
  • Sandra Ann Carson
Chapter

Abstract

Assisted reproductive technologies (ART) can be defined as fertility treatment that involves removing eggs from a woman’s ovaries and combining them with sperm in a laboratory. Methods used to achieve this result include in vitro fertilization (IVF), gamete intrafallopian transfer (GIFT), and zygote intrafallopian transfer (ZIFT). Currently, more than 150,000 cycles of human IVF and similar techniques are performed each year in the United States, resulting in the birth of over 60,000 babies. Far-reaching advances in laboratory techniques and culture conditions have been made since 1978, when the first IVF baby was born in England. Today, ART procedures are responsible for over 1 % of all children born in the United States annually.

Keywords

Assist Reproductive Technology GnRH Agonist Preimplantation Genetic Diagnosis Polar Body Preimplantation Genetic Screening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to acknowledge Michael P. Steinkampf, Beth A. Malizia, Damon Davis, Cristine Silva, and Melissa Hiner, who were contributors to the first edition of this chapter.

References

  1. 1.
    Centers for Disease Control and Prevention. Assisted Reproductive Technology (ART). http://www.cdc.gov/ART/index.htm.
  2. 2.
    Edwards RG, Bavister BD, Steptoe PC. Early stages of fertilization in vitro of human oocytes matured in vitro. Nature. 1969;221(5181):632–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Chang MC. Fertilization of rabbit ova in vitro. Nature. 1959;184 Suppl 7Suppl 7:466–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Johnson MH. Robert Edwards: the path to IVF. Reprod Biomed Online. 2011;23(2):245–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Jones Jr HW, Jones GS, Andrews MC, Acosta A, Bundren C, Garcia J, et al. The program for in vitro fertilization at Norfolk. Fertil Steril. 1982;38(1):14–21.PubMedGoogle Scholar
  6. 6.
    Al-Inany HG, Aboulghar M, Mansour R, Proctor M. Recombinant versus urinary human chorionic gonadotropin for ovulation induction in assisted conception. Cochrane Database Syst Rev. 2005;2:CD003719.PubMedGoogle Scholar
  7. 7.
    In vitro fertilization/embryo transfer in the United States: 1987 results from the National IVF-ET registry. Fertil Steril. 1989;51(1):13–9.Google Scholar
  8. 8.
    Porter RN, Smith W, Craft IL, Abdulwahid NA, Jacobs HS. Induction of ovulation for in-vitro fertilisation using buserelin and gonadotropins. Lancet. 1984;2(8414):1284–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Meldrum DR, Wisot A, Hamilton F, Gutlay AL, Kempton WF, Huynh D. Routine pituitary suppression with leuprolide before ovarian stimulation for oocyte retrieval. Fertil Steril. 1989;51(3):455–9.PubMedGoogle Scholar
  10. 10.
    Hughes EG, Fedorkow DM, Daya S, Sagle MA, Van de Koppel P, Collins JA. The routine use of gonadotropin-releasing hormone agonists prior to in vitro fertilization and gamete intrafallopian transfer: a meta-analysis of randomized controlled trials. Fertil Steril. 1992;58(5):888–96.PubMedGoogle Scholar
  11. 11.
    Barmat LI, Chantilis SJ, Hurst BS, Dickey RP. A randomized prospective trial comparing gonadotropin-releasing hormone (GnRH) antagonist/recombinant follicle-stimulating hormone (rFSH) versus GnRH-agonist/rFSH in women pretreated with oral contraceptives before in vitro fertilization. Fertil Steril. 2005;83(2):321–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Pincus G, Enzmann EV. The comparative behavior of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs. J Exp Med. 1935;62(5):665–75.PubMedCrossRefGoogle Scholar
  13. 13.
    Chian RC, Gulekli B, Buckett WM, Tan SL. Priming with human chorionic gonadotropin before retrieval of immature oocytes in women with infertility due to the polycystic ovary syndrome. N Engl J Med. 1999;341(21):1624.PubMedCrossRefGoogle Scholar
  14. 14.
    Mikkelsen AL. Strategies in human in-vitro maturation and their clinical outcome. Reprod Biomed Online. 2005;10(5):593–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Gremeau AS, Andreadis N, Fatum M, Craig J, Turner K, McVeigh E, et al. In vitro maturation or in vitro fertilization for women with polycystic ovaries? A case–control study of 194 treatment cycles. Fertil Steril. 2012;98(2):355–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Younis JS, Ezra Y, Laufer N, Ohel G. Late manifestation of pelvic abscess following oocyte retrieval, for in vitro fertilization, in patients with severe endometriosis and ovarian endometriomata. J Assist Reprod Genet. 1997;14(6):343–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Oatway C, Gunby J, Daya S. Day three versus day two embryo transfer following in vitro fertilization or intracytoplasmic sperm injection. Cochrane Database Syst Rev. 2004;2:CD004378.PubMedGoogle Scholar
  18. 18.
    Croxatto HB, Fuentealba B, Diaz S, Pastene L, Tatum HJ. A simple nonsurgical technique to obtain unimplanted eggs from human uteri. Am J Obstet Gynecol. 1972;112(5):662–8.PubMedGoogle Scholar
  19. 19.
    Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65(2):349–53.PubMedGoogle Scholar
  20. 20.
    Practice Committee of the American Society for Reproductive Medicine, Practice Committee of the Society for Assisted Reproductive Technology. Guidelines on number of embryos transferred. Fertil Steril. 2009;92(5):1518–19.CrossRefGoogle Scholar
  21. 21.
    Thurin A, Hausken J, Hillensjo T, Jablonowska B, Pinborg A, Strandell A, et al. Elective single-embryo transfer versus double-embryo transfer in in vitro fertilization. N Engl J Med. 2004;351(23):2392–402.PubMedCrossRefGoogle Scholar
  22. 22.
    Pandian Z, Bhattacharya S, Ozturk O, Serour G, Templeton A. Number of embryos for transfer following in-vitro fertilisation or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev. 2009;2:CD003416.PubMedGoogle Scholar
  23. 23.
    Gelbaya TA, Tsoumpou I, Nardo LG. The likelihood of live birth and multiple birth after single versus double embryo transfer at the cleavage stage: a systematic review and meta-analysis. Fertil Steril. 2010;94(3):936–45.PubMedCrossRefGoogle Scholar
  24. 24.
    McLernon DJ, Harrild K, Bergh C, Davies MJ, de Neubourg D, Dumoulin JC, et al. Clinical effectiveness of elective single versus double embryo transfer: meta-analysis of individual patient data from randomised trials. BMJ. 2010;341:c6945.PubMedCrossRefGoogle Scholar
  25. 25.
    Macklon NS, Fauser BC. Impact of ovarian hyperstimulation on the luteal phase. J Reprod Fertil Suppl. 2000;55:101–8.PubMedGoogle Scholar
  26. 26.
    van der Linden M, Buckingham K, Farquhar C, Kremer JA, Metwally M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev. 2011;10:CD009154.PubMedGoogle Scholar
  27. 27.
    Nyboe Andersen A, Popovic-Todorovic B, Schmidt KT, Loft A, Lindhard A, Hojgaard A, et al. Progesterone supplementation during early gestations after IVF or ICSI has no effect on the delivery rates: a randomized controlled trial. Hum Reprod. 2002;17(2):357–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Hayashi M, Nakai A, Satoh S, Matsuda Y. Adverse obstetric and perinatal outcomes of singleton pregnancies may be related to maternal factors associated with infertility rather than the type of assisted reproductive technology procedure used. Fertil Steril. 2012;98(4):922–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Grady R, Alavi N, Vale R, Khandwala M, McDonald SD. Elective single embryo transfer and perinatal outcomes: a systematic review and meta-analysis. Fertil Steril. 2012;97(2):324–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Rimm AA, Katayama AC, Katayama KP. A meta-analysis of the impact of IVF and ICSI on major malformations after adjusting for the effect of subfertility. J Assist Reprod Genet. 2011;28(8):699–705.PubMedCrossRefGoogle Scholar
  31. 31.
    Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2012;98(2):368–77. e9.Google Scholar
  32. 32.
    Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346(10):725–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366(19):1803–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Lie RT, Lyngstadaas A, Orstavik KH, Bakketeig LS, Jacobsen G, Tanbo T. Birth defects in children conceived by ICSI compared with children conceived by other IVF-methods; a meta-analysis. Int J Epidemiol. 2005;34(3):696–701.PubMedCrossRefGoogle Scholar
  35. 35.
    Odom LN, Segars J. Imprinting disorders and assisted reproductive technology. Curr Opin Endocrinol Diabetes Obes. 2010;17(6):517–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Ponjaert-Kristoffersen I, Bonduelle M, Barnes J, Nekkebroeck J, Loft A, Wennerholm UB, et al. International collaborative study of intracytoplasmic sperm injection-conceived, in vitro fertilization-conceived, and naturally conceived 5-year-old child outcomes: cognitive and motor assessments. Pediatrics. 2005;115(3):e283–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Opsahl MS, Blauer KL, Black SH, Dorfmann A, Sherins RJ, Schulman JD. Pregnancy rates in sequential in vitro fertilization cycles by oocyte donors(1). Obstet Gynecol. 2001;97(2):201–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Yedwab GA, Paz G, Homonnai TZ, David MP, Kraicer PF. The temperature, pH, and partial pressure of oxygen in the cervix and uterus of women and uterus of rats during the cycle. Fertil Steril. 1976;27(3):304–9.PubMedGoogle Scholar
  40. 40.
    Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99(2):673–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Karagenc L, Sertkaya Z, Ciray N, Ulug U, Bahceci M. Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod Biomed Online. 2004;9(4):409–17.PubMedCrossRefGoogle Scholar
  42. 42.
    Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst Rev. 2012;7:CD008950.PubMedGoogle Scholar
  43. 43.
    Kovacic B, Sajko MC, Vlaisavljevic V. A prospective, randomized trial on the effect of atmospheric versus reduced oxygen concentration on the outcome of intracytoplasmic sperm injection cycles. Fertil Steril. 2010;94(2):511–19.PubMedCrossRefGoogle Scholar
  44. 44.
    Meintjes M, Chantilis SJ, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, et al. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod. 2009;24(2):300–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Waldenstrom U, Engstrom AB, Hellberg D, Nilsson S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril. 2009;91(6):2461–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Gardner DK, Weissman A, Howles CM, Shoham Z. Textbook of assisted reproductive technologies: laboratory and clinical perspectives. 3rd ed. London: Taylor & Francis; 2008.Google Scholar
  47. 47.
    Balaban B, Yakin K, Urman B. Randomized comparison of two different blastocyst grading systems. Fertil Steril. 2006;85(3):559–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Das S, Blake D, Farquhar C, Seif MM. Assisted hatching on assisted conception (IVF and ICSI). Cochrane Database Syst Rev. 2009;2:CD001894.PubMedGoogle Scholar
  49. 49.
    Handyside AH, Kontogianni EH, Hardy K, Winston RM. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344(6268):768–70.PubMedCrossRefGoogle Scholar
  50. 50.
    Dyban A, Freidine M, Severova E, Cieslak J, Ivakhnenko V, Verlinsky Y. Detection of aneuploidy in human oocytes and corresponding first polar bodies by fluorescent in situ hybridization. J Assist Reprod Genet. 1996;13(1):73–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Verlinsky Y, Cieslak J, Ivakhnenko V, Lifchez A, Strom C, Kuliev A. Birth of healthy children after preimplantation diagnosis of common aneuploidies by polar body fluorescent in situ ­hybridization analysis. Preimplantation Genetics Group. Fertil Steril. 1996;66(1):126–9.PubMedGoogle Scholar
  52. 52.
    Harper JC, Dawson K, Delhanty JD, Winston RM. The use of fluorescent in-situ hybridization (FISH) for the analysis of in-vitro fertilization embryos: a diagnostic tool for the infertile couple. Hum Reprod. 1995;10(12):3255–8.PubMedGoogle Scholar
  53. 53.
    Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs. Hum Reprod Update. 2011;17(4):454–66.PubMedCrossRefGoogle Scholar
  54. 54.
    Fragouli E, Wells D. Aneuploidy screening for embryo selection. Semin Reprod Med. 2012;30(4):289–301.PubMedCrossRefGoogle Scholar
  55. 55.
    Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature. 1985;313(6003):573–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Liebermann J, Tucker MJ, Graham JR, Han T, Davis A, Levy MJ. Blastocyst development after vitrification of multipronuclear zygotes using the Flexipet denuding pipette. Reprod Biomed Online. 2002;4(2):146–50.PubMedCrossRefGoogle Scholar
  57. 57.
    Edgar DH, Gook DA. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update. 2012;18(5):536–54.PubMedCrossRefGoogle Scholar
  58. 58.
    Pouwer AW, Farquhar C, Kremer JA. Long-acting FSH versus daily FSH for women undergoing assisted reproduction. Cochrane Database Syst Rev. 2012;6:CD009577.PubMedGoogle Scholar
  59. 59.
    Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH. Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril. 2008;90(1):77–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–21.PubMedCrossRefGoogle Scholar
  61. 61.
    Kirkegaard K, Agerholm IE, Ingerslev HJ. Time-lapse monitoring as a tool for clinical embryo assessment. Hum Reprod. 2012;27(5):1277–85.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Beth Plante
    • 1
  • Gary D. Smith
    • 2
  • Sandra Ann Carson
    • 3
  1. 1.Brown University, Warren Alpert Medical School, Women and Infants Hospital of Rhode IslandProvidenceUSA
  2. 2.Departments of Obstetrics/Gynecology, Physiology, and UrologyUniversity of MichiganAnn ArborUSA
  3. 3.Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and GynecologyWomen and Infants Hospital of Rhode IslandProvidenceUSA

Personalised recommendations