Measurement of Cognitive Outcomes of At-Risk Children Using Novelty Processing in Rural Kenyan Children

Part of the Specialty Topics in Pediatric Neuropsychology book series (STPN)


In the developing world, there are not many ways to measure the neurodevelopment of children, since culturally fitting neuropsychological measures are often lacking. Event-related potentials (ERPs) are often used in the Western world to measure cognitive development after cerebral infarct. ERPs are voltage brain waves that are associated with physical or mental occurrences and provide insight into information processing affected by cerebral disease. This chapter introduces ERPs to investigate neurocognitive development following pediatric severe falciparum malaria in rural Kenyan children. Since ERPs are not dependent on language, they are very useful in rural Kenya. The worth of ERPs in portraying neurodevelopment in these children is demonstrated by the fact that in this study, there were a significant number of children exposed to severe malaria who had abnormal ERPs.


Bacterial Meningitis Falciparum Malaria Severe Malaria Cerebral Malaria Severe Falciparum Malaria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abubakar, A., Holding, P., van Baar, A., Newton, C. R., & van de Vijver, F. J. (2008). Monitoring psychomotor development in a resource-limited setting: An evaluation of the Kilifi Developmental Inventory. Annals of Tropical Paediatrics, 28(3), 217–226.PubMedCrossRefGoogle Scholar
  2. Albrecht, R., Suchodoletz, W., Uwer, R. (2000). The development of auditory evoked dipole source activity from childhood to adulthood. Clinical Neurophysiology, 111, 2268–2276.PubMedCrossRefGoogle Scholar
  3. Alho, K., Winkler, I., Escera, C., Huotilainen, M., Virtanen, J., Jääskeläinen, I. P., et al. (1998). Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings. Psychophysiology, 35(2), 211–224.PubMedCrossRefGoogle Scholar
  4. Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., Dant, C. C., Reiss, A. L. (2005). White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15, 1848–1854.PubMedCrossRefGoogle Scholar
  5. Baudena, P., Halgren, E., Heit, G., & Clarke, J. M. (1995). Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalography and Clinical Neurophysiology, 94(4), 251–264.PubMedCrossRefGoogle Scholar
  6. Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551–565.PubMedCrossRefGoogle Scholar
  7. Berg, C. A., & Sternberg, R. J. (1985). Response to novelty: Continuity versus discontinuity in the developmental course of intelligence. Advances in Child Development and Behavior, 19, 1–47.PubMedCrossRefGoogle Scholar
  8. Boivin, M. J. (2002). Effects of early cerebral malaria on cognitive ability in Senegalese children. Journal of Developmental and Behavioral Pediatrics, 23(5), 353–364.PubMedCrossRefGoogle Scholar
  9. Boivin, M. J., Bangirana, P., Byarugaba, J., Opoka, R. O., Idro, R., Jurek, A. M., et al. (2007). Cognitive impairment after cerebral malaria in children: A prospective study. Pediatrics, 119, e360–e366.PubMedCrossRefGoogle Scholar
  10. Burden, M. J., Westerlund, A. J., Armony-Sivan, R., Nelson, C. A., Jacobson, S. W., Lozoff, B., et al. (2007). An event-related potential study of attention and recognition memory in infants with iron-deficiency anemia. Pediatrics, 120(2), e336–e345.PubMedCrossRefGoogle Scholar
  11. Byrne, J. M., Connolly, J. F., MacLean, S. E., Beattie, T. L., Dooley, J. M., & Gordon, K. E. (2001). Brain activity and cognitive status in pediatric patients: Development of a clinical assessment protocol. Journal of Child Neurology, 16(5), 325–332.PubMedGoogle Scholar
  12. Carter, J. A., Mung’ala-Odera, V., Neville, B. G., Murira, G., Mturi, N., Musumba, C., et al. (2005a). Persistent neurocognitive impairments associated with severe falciparum malaria in Kenyan children. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 476–481.PubMedCrossRefGoogle Scholar
  13. Carter, J. A., Ross, A. J., Neville, B. G., Obiero, E., Katana, K., Mung’ala-Odera, V., et al. (2005b). Developmental impairments following severe falciparum malaria in children. Tropical Medicine & International Health, 10, 3–10.CrossRefGoogle Scholar
  14. Ceponiene, R., Cheour, M., & Näätänen, R. (1998). Interstimulus interval and auditory event-­related potentials in children: Evidence for multiple generators. Electroencephalography and Clinical Neurophysiology, 108(4), 345–354.PubMedCrossRefGoogle Scholar
  15. Ceponiene, R., Haapanen, M. L., Ranta, R., Näätänen, R., & Hukki, J. (2002a). Auditory sensory impairment in children with oral clefts as indexed by auditory event-related potentials. The Journal of Craniofacial Surgery, 13(4), 554–566. discussion 567.PubMedCrossRefGoogle Scholar
  16. Ceponiene, R., Rinne, T., & Näätänen, R. (2002b). Maturation of cortical sound processing as indexed by event-related potentials. Clinical Neurophysiology, 113(6), 870–882.PubMedCrossRefGoogle Scholar
  17. Ceponiene, R., Yaguchi, K., Shestakova, A., Alku, P., Suominen, K., Naatanen, R. (2002c). Sound complexity and ‘speechness’ effects on pre-attentive auditory discrimination in children. International Journal of Psychophysiology, 43, 199–211.PubMedCrossRefGoogle Scholar
  18. Courchesne, E. (1978). Neurophysiological correlates of cognitive development: Changes in long-­latency event-related potentials from childhood to adulthood. Electroencephalography and Clinical Neurophysiology, 45(4), 468–482.PubMedCrossRefGoogle Scholar
  19. Courchesne, E. (1990). Chronology of postnatal human brain development: Event-related potential, positron emission tomography, myelinogenesis, and synaptogenesis studies. In R. Rohrbaugh, R. Parasuroman, & R. Johnson (Eds.), Event-related potentials: Basic issues and applications (pp. 210–241). New York: Oxford University Press.Google Scholar
  20. Courchesne, E., Ganz, L., & Norcia, A. M. (1981). Event-related brain potentials to human faces in infants. Child Development, 52(3), 804–811.PubMedCrossRefGoogle Scholar
  21. Courchesne, E., Hillyard, S. A., & Galambos, R. (1975). Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalography and Clinical Neurophysiology, 39, 131–143.PubMedCrossRefGoogle Scholar
  22. de Haan, M. (2007). Visual attention and recognition memory in infancy. In M. de Haan (Ed.), Infant EEG and event-related potentials (pp. 101–143). Hove: Psychology Press.Google Scholar
  23. de Haan, M., Johnson, M. H., & Halit, H. (2007). Development of face-sensitive event-related potentials during infancy. In M. de Haan (Ed.), Infant EEG and event-related potentials (pp. 77–99). Hove: Psychology Press.Google Scholar
  24. Dugbartey, A. T., & Spellacy, F. J. (1997). Simple reaction time and cognitive information processing efficiency after cerebral malaria in Ghanaian children. Neurological Infections and Epidemiology, 2, 141–144.Google Scholar
  25. Dugbartey, A. T., Spellacy, F. J., & Dugbartey, M. T. (1998). Somatosensory discrimination deficits following pediatric cerebral malaria. The American Journal of Tropical Medicine and Hygiene, 59(3), 393–396.PubMedGoogle Scholar
  26. Elwan, O., Madkour, O., Elwan, F., Mostafa, M., Abbas Helmy, A., Abdel-Naseer, M., et al. (2003). Brain aging in normal Egyptians: Cognition, education, personality, genetic and immunological study. Journal of the Neurological Sciences, 211(1–2), 15–22.PubMedCrossRefGoogle Scholar
  27. Escera, C., Alho, K., Winkler, I., & Näätänen, R. (1998). Neural mechanisms of involuntary attention to acoustic novelty and change. Journal of Cognitive Neuroscience, 10(5), 590–604.PubMedCrossRefGoogle Scholar
  28. Friedman, D., Cycowicz, Y. M., & Gaeta, H. (2001). The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neuroscience and Biobehavioral Reviews, 25, 355–373.PubMedCrossRefGoogle Scholar
  29. Friedman, D., & Simpson, G. V. (1994). ERP amplitude and scalp distribution to target and novel events: Effects of temporal order in young, middle-aged and older adults. Brain Research. Cognitive Brain Research, 2(1), 49–63.PubMedCrossRefGoogle Scholar
  30. Friedman, D., Simpson, G., & Hamberger, M. (1993). Age-related changes in scalp topography to novel and target stimuli. Psychophysiology, 30(4), 383–396.PubMedCrossRefGoogle Scholar
  31. Gomot, M., Giard, M. H., Roux, S., Barthélémy, C., & Bruneau, N. (2000). Maturation of frontal and temporal components of mismatch negativity (MMN) in children. Neuroreport, 11(14), 3109–3112.PubMedCrossRefGoogle Scholar
  32. Grantham-McGregor, S., Cheung, Y. B., Cueto, S., Glewwe, P., Richter, L., & Strupp, B. (2007). Developmental potential in the first 5 years for children in developing countries. Lancet, 369, 60–70.PubMedCrossRefGoogle Scholar
  33. Grossmann, T., & Johnson, M. H. (2007). The development of the social brain in human infancy. The European Journal of Neuroscience, 25(4), 909–919.PubMedCrossRefGoogle Scholar
  34. Henson, R. N., Goshen-Gottstein, Y., Ganel, T., Otten, L. J., Quayle, A., & Rugg, M. D. (2003). Electrophysiological and haemodynamic correlates of face perception, recognition and priming. Cerebral Cortex, 13, 793–805.PubMedCrossRefGoogle Scholar
  35. Hogan, A. M., Vargha-Khadem, F., Kirkham, F. J., Baldeweg, T. (2005). Maturation of action monitoring from adolescence to adulthood: an ERP study. Developmental Science, 8, 525–534.PubMedGoogle Scholar
  36. Holding, P. A., & Kitsao-Wekulo, P. K. (2004). Describing the burden of malaria on child development: What should we be measuring and how should we be measuring it? The American Journal of Tropical Medicine and Hygiene, 71(2 Suppl), 71–79.PubMedGoogle Scholar
  37. Holding, P. A., Stevenson, J., Peshu, N., & Marsh, K. (1999). Cognitive sequelae of severe malaria with impaired consciousness. Transactions of the Royal Society of Tropical Medicine and Hygiene, 93, 529–534.PubMedCrossRefGoogle Scholar
  38. Holding, P. A., Taylor, H. G., Kazungu, S. D., Mkala, T., Gona, J., Mwamuye, B., et al. (2004). Assessing cognitive outcomes in a rural African population: Development of a neuropsychological battery in Kilifi District, Kenya. Journal of the International Neuropsychological Society, 10, 246–260.PubMedCrossRefGoogle Scholar
  39. Itier, R. J., & Taylor, M. J. (2004). Source analysis of the N170 to faces and objects. Neuroreport, 15(8), 1261–1265.PubMedCrossRefGoogle Scholar
  40. John, C. C., Bangirana, P., Byarugaba, J., Opoka, R. O., Idro, R., Jurek, A. M., et al. (2008). Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics, 122, e92–e99.PubMedCrossRefGoogle Scholar
  41. Key, A. P. F., Dove, G. O., & Maguire, M. J. (2005). Linking brainwaves to the brain: An ERP primer. Developmental Neuropsychology, 27(2), 183–215.PubMedCrossRefGoogle Scholar
  42. Kihara, M., Carter, J. A., & Newton, C. R. (2006). The effect of Plasmodium falciparum on cognition: A systematic review. Tropical Medicine & International Health, 11, 386–397.CrossRefGoogle Scholar
  43. Kihara, M., de Haan, M., Garrashi, H. H., Neville, B. G., & Newton, C. R. (2010a). Atypical brain responses to novelty in rural African children with a history of severe falciparum malaria. Journal of the Neurological Sciences, 296, 88–95.PubMedCrossRefGoogle Scholar
  44. Kihara, M., de Haan, M., Were, E. O., Garrashi, H. H., Neville, B. G., & Newton, C. R. (2012). Cognitive deficits following exposure to pneumococcal meningitis: An event-related potential study. BMC Infectious Diseases, 12, 79.PubMedCrossRefGoogle Scholar
  45. Kihara, M., Hogan, A. M., Newton, C. R., Garrashi, H. H., Neville, B. G., & de Haan, M. (2010b). Auditory and visual novelty processing in normally-developing Kenyan children. Clinical Neurophysiology, 121(4), 564–576.PubMedCrossRefGoogle Scholar
  46. Knight, R. T. (1984). Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalography and Clinical Neurophysiology, 59(1), 9–20.PubMedCrossRefGoogle Scholar
  47. Knight, R. (1996). Contribution of human hippocampal region to novelty detection. Nature, 383(6597), 256–259.PubMedCrossRefGoogle Scholar
  48. Knight, R. T., & Scabini, D. (1998). Anatomic bases of event-related potentials and their relationship to novelty detection in humans. Journal of Clinical Neurophysiology, 15(1), 3–13.PubMedCrossRefGoogle Scholar
  49. Kotz, S. A., Opitz, B., & Friederici, A. D. (2007). ERP effects of meaningful and non-meaningful sound processing in anterior temporal patients. Restorative Neurology and Neuroscience, 25(3–4), 273–284.PubMedGoogle Scholar
  50. Lewis, M., & Brooks-Gunn, J. (1981). Visual attention at three months as a predictor of cognitive function at two years of age. Intelligence, 5, 131–140.CrossRefGoogle Scholar
  51. Lombard, F. D. (2005). An investigation of the Auditory P300 event related potential across gender (Ph.D. dissertation). University of Pretoria, Pretoria.Google Scholar
  52. Määttä, S., Saavalainen, P., Könönen, M., Pääkkönen, A., Muraja-Murro, A., & Partanen, J. (2005). Processing of highly novel auditory events in children and adults: An event-related potential study. Neuroreport, 16(13), 1443–1446.PubMedCrossRefGoogle Scholar
  53. Molyneux, M. E., Taylor, T. E., Wirima, J. J., & Borgstein, A. (1989). Clinical features and prognostic indicators in paediatric cerebral malaria: A study of 131 comatose Malawian children. The Quarterly Journal of Medicine, 71(265), 441–459.PubMedGoogle Scholar
  54. Mwanza, J. C., Lysebo, D. E., Kayembe, D. L., Tshala-Katumbay, D., Nyamabo, L. K., Tylleskär, T., et al. (2003). Visual evoked potentials in konzo, a spastic paraparesis of acute onset in Africa. Ophthalmologica, 217(6), 381–386.PubMedCrossRefGoogle Scholar
  55. Naatanen, R., & Picton, T. W. (1986). N2 and automatic versus controlled processes. Electroencephalography and Clinical Neurophysiology Supplement, 38, 169–186.PubMedGoogle Scholar
  56. Naatanen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24(4), 375–425.PubMedCrossRefGoogle Scholar
  57. Newton, C. R., Hien, T. T., & White, N. (2000). Cerebral malaria. Journal of Neurology, Neurosurgery, and Psychiatry, 69(4), 433–441.PubMedCrossRefGoogle Scholar
  58. Oluwole, O. S., Onabolu, A. O., Cotgreave, I. A., Rosling, H., Persson, A., & Link, H. (2003). Incidence of endemic ataxic polyneuropathy and its relation to exposure to cyanide in a Nigerian community. Journal of Neurology, Neurosurgery, and Psychiatry, 74(10), 1417–1422.PubMedCrossRefGoogle Scholar
  59. Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9(4), 456–479.PubMedCrossRefGoogle Scholar
  60. Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Jr., et al. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37, 127–152.PubMedCrossRefGoogle Scholar
  61. Polich, J., & McIsaac, H. K. (1994). Comparison of auditory P300 habituation from active and passive conditions. International Journal of Psychophysiology, 17(1), 25–34.PubMedCrossRefGoogle Scholar
  62. Ponton, C. W., Eggermont, J. J., Don, M., Waring, M. D., Kwong, B., Cunningham, J., Trautwein, P. (2000a). Maturation of the mismatch negativity: Effects of profound deafness and cochlear implant use. Audiology and Neurootology, 5, 167–185.Google Scholar
  63. Ponton, C. W., Eggermont, J. J., Kwong, B., Don, M. (2000b). Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111, 220–236.Google Scholar
  64. Reynolds, G. D., & Richards, J. E. (2005). Familiarization, attention, and recognition memory in infancy: An event-related potential and cortical source localization study. Developmental Psychology, 41(4), 598–615.PubMedCrossRefGoogle Scholar
  65. Salt, A. T., Sonken, P. M., Wade, A., Jayatunga, R. (1995). The Maturation of Linear acuity and compliance with the Sonksen-Silver Acuity System for young children. Developmental Medicine and Child Neurology, 37, 505–514.PubMedCrossRefGoogle Scholar
  66. Schweinberger, S. R., Pickering, E. C., Burton, A. M., & Kaufmann, J. M. (2002). Human brain potential correlated of repetition priming in face and name recognition. Neuropsychologia, 40, 2057–2073.PubMedCrossRefGoogle Scholar
  67. Sharma, A., Dorman, M. F., Spahr, A. J. (2002). A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear and Hearing, 23, 532–539.PubMedCrossRefGoogle Scholar
  68. Sharma, A., Kraus, N., McGee, T. J., & Nicol, T. G. (1997). Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalography and Clinical Neurophysiology, 104(6), 540–545.PubMedCrossRefGoogle Scholar
  69. Shibasaki, H., & Miyazaki, M. (1992). Event-related potential studies in infants and children. Journal of Clinical Neurophysiology, 9(3), 408–418.PubMedCrossRefGoogle Scholar
  70. Shibata, T., Nishijo, H., Tamura, R., Miyamoto, K., Eifuku, S., Endo, S., et al. (2002). Generators of visual evoked potentials for faces and eyes in the human brain as determined by dipole localization. Brain Topography, 15(1), 51–63.PubMedCrossRefGoogle Scholar
  71. Slater, A. (1997). Can measures of infant habituation predict later intellectual ability? Archives of Disease in Childhood, 77, 474–476.PubMedCrossRefGoogle Scholar
  72. Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y., & Hay, S. I. (2005). The global distribution of clinical episodes of Plasmodium Falciparum malaria. Nature, 434, 214–217.PubMedCrossRefGoogle Scholar
  73. Soltani, M., & Knight, R. T. (2000). Neural origins of the P300. Neurobiology, 14, 199–224.Google Scholar
  74. Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38(4), 387–401.PubMedCrossRefGoogle Scholar
  75. Takeshita, K., Nagamine, T., Thuy, D. H., Satow, T., Matsuhashi, M., Yamamoto, J., et al. (2002). Maturational change of parallel auditory processing in school-aged children revealed by simultaneous recording of magnetic and electric cortical responses. Clinical Neurophysiology, 113(9), 1470–1484.PubMedCrossRefGoogle Scholar
  76. Taylor, M. J., Batty, M., & Itier, R. J. (2004). The faces of development: A review of early face processing over childhood. Journal of Cognitive Neuroscience, 16(8), 1426–1442.PubMedCrossRefGoogle Scholar
  77. Taylor, M. J., McCarthy, G., Saliba, E., Degiovanni, E. (1999). ERP evidence of developmental changes in processing of faces. Clinical Neurophysiology, 110, 910–915.PubMedCrossRefGoogle Scholar
  78. Thomas, K. M., & Nelson, C. A. (1996). Age-related changes in the electrophysiological response to visual stimulus novelty: A topographical approach. Electroencephalography and Clinical Neurophysiology, 98, 294–308.PubMedCrossRefGoogle Scholar
  79. Van der Stelt, O., Geesken, R., Gunning, W. B., Snel, J., & Kok, A. (1998). P3 scalp topography to target and novel visual stimuli in children of alcoholics. Alcohol, 15(2), 119–136.PubMedCrossRefGoogle Scholar
  80. WHO. (2000). Severe falciparum malaria. World Health Organization, communicable diseases cluster. Transactions of the Royal Society of Tropical Medicine and Hygiene, 94(Suppl 1), S1–S90.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.KEMRI-Wellcome Trust Research ProgrammeKilifiKenya

Personalised recommendations