Advertisement

Nanoscale Effects: Gate Oxide Leakage Currents

  • Amit Chaudhry
Chapter

Abstract

In this chapter, a review of gate oxide scaling problems, physics, and models in MOSFETs has been done. The modeling approach to gate tunneling used in several industry-standard compact MOS models has been presented. Some special cases of gate oxide tunneling have also been considered in this chapter.

Keywords

Gate Voltage Transmission Probability Phase Lock Loop Gate Oxide Fowler Nordheim 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 12.
    Foty D (1997) MOSFET modeling with SPICE, principles and practice, Prentice HallGoogle Scholar
  2. 13.
    Lee WC, Hu CM (2001) Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling. IEEE T Electron Dev 48(7):1366–1373CrossRefGoogle Scholar
  3. 14.
    He J et al (2007) BSIM 5: an advanced charge based MOSFET model for nanoscale VLSI circuit simulation. Solid State Electron 51:433–444CrossRefGoogle Scholar
  4. 17.
    Gildenblat G, Wang H, Chen TL, Gu X, Cai X (2004) SP: an advanced surface-potential-based compact MOSFET model. IEEE J Solid St Circ 39(9):1394–1406CrossRefGoogle Scholar
  5. 18.
    Miura- Mattausch M, Ueno H, Mattausch HJ, Kumashiro S, Tamaguchi T, Nakatama N (2002) HiSIM: self -consistent surface – potential MOS model valid down to sub-100 nm technologies, MSM workshop, April 2002Google Scholar
  6. 21.
    Ravindra NM, Jin Z (1992) Fowler- Nordhiem tunneling in thin SiO2 films. Smart Mater Struct 1:197–201CrossRefGoogle Scholar
  7. 22.
    Lezlinger M, Snow EH (1969) Fowler-Nordheim tunneling into thermally grown SiO2. J Appl Phys 40:278–283CrossRefGoogle Scholar
  8. 23.
    Rana F, Tiwari S, Buchanan DA (1996) Self-consistent modeling of accumulation layers and tunneling currents through very thin oxides. Appl Phys Lett 69:1104–1106CrossRefGoogle Scholar
  9. 24.
    Lo SH, Buchanan DA, Taur Y, Wang W (1997) Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Devic Lett 18:209–211CrossRefGoogle Scholar
  10. 25.
    Shih W-K, Wang EX, Jallepalli S, Leon F, Maziar CM, Tasch AF Jr (1998) Modeling gate leakage current in nMOS structures due to tunnneling through an ultrathin oxide. Solid State Electron 42:997–1006CrossRefGoogle Scholar
  11. 26.
    Register LF, Roesenbaum E, Yang K (1999) Analytical model for direct tunneling current in poly Si-gate-metal-oxide-semiconductor devices. Appl Phys Lett 74:457–459CrossRefGoogle Scholar
  12. 27.
    Nian Yang W, Henson K, Hauser JR, Wortman JJ (1999) Modeling study of ultrathin gate oxide using direct tunneling current and capacitance-voltage measurements in MOS devices. IEEE T Electron Dev 46:292–294Google Scholar
  13. 28.
    Ghetti A (2000) Characterization of tunneling current in ultra-thin gate oxide. Solid State Electron 44:1523–1531CrossRefGoogle Scholar
  14. 29.
    Vogel EM, Ahmed KZ, Hornung B, Kriklen Henson W, Mclarty PK, Lucovsky G, Hauser JR, Wortman JJ (1998) Modeled tunnel currents for high dielectric constant dielectrics. IEEE T Electron Dev 45:1350–1355CrossRefGoogle Scholar
  15. 30.
    Sivakumar Mudanai, Yang-Yu Fan, Qiqing Ouyang, Tasch Al F, Sanjay Kumar Banerjee (2000) Modeling of direct tunneling current through gate dielectric stacks, IEEE T Electron Dev, 47: 1851–1857Google Scholar
  16. 31.
    Lee J (2002) Model and analysis of gate leakage current in Ultrathin Nitrided oxide MOSFETs. IEEE T Electron Dev 49(7):1232–1241CrossRefGoogle Scholar
  17. 32.
    Sheu C-J, Jang S-L (2000) A MOSFET gate current model with the direct tunneling mechanism. Solid State Electron 44(10):1819–1824CrossRefGoogle Scholar
  18. 33.
    Liu X, Kang J, Han R (2003) Direct tunneling current model for MOS devices with ultra-thin gate oxide including quantization effect and polysilicon depletion effect. Solid State Commun 125(3–4):219–223CrossRefGoogle Scholar
  19. 34.
    Cassan E, Galdin S, Dollfus P, Hesto P (1999) Analysis of electron energy distribution function in ultra-thin gate oxide n-MOSFETs using Monte Carlo simulation for direct tunneling gate current calculation. Phys B 272:550–553CrossRefGoogle Scholar
  20. 35.
    Grgec D (2002) Efficient Monte Carlo simulation of tunnel currents in MOS structures, Proceeding of the 32nd European solid-state device research conference, pp 24–26, pp 179–182Google Scholar
  21. 36.
    Cassan E (1999) Modeling of direct tunneling gate current in ultra-thin gate oxide MOSFETs: a comparison between simulators, International conference on Simulation of Semiconductor Processes and Devices, pp 115–118Google Scholar
  22. 37.
    Kajen RS, Chang KKF, Ping Bai, Erping Li (2007) Computation of direct tunneling gate leakage currents in nano-MOSFETs using ensemble full band Monte Carlo with quantum correction, 7th IEEE conference on Nanotechnology, pp 76–80Google Scholar
  23. 38.
    Kajen RS, Chang KKF, Ping Bai, Erping Li (2007) Gate leakage analysis of nano-MOSFETs using ensemble full band Monte Carlo with quantum correction, International symposium on integrated circuits, pp 135–138Google Scholar
  24. 39.
    Seonghoon Jin, Wettstein A, Woosung Choi, Bufler FM, Lyumkis E (2009) Gate current calculations using spherical harmonic expansion of Boltzmann equation, International conference on Simulation of Semiconductor Processes and Devices, pp 1–4Google Scholar
  25. 40.
    Clerc R, Spinelli A, Ghibaudo G, Pananakakis G (2002) Theory of direct tunneling current in metal-oxide-semiconductor structures. J Appl Phys 91(3):1400–1409CrossRefGoogle Scholar
  26. 41.
    Lo SH, Buchanan DA, Taur Y (1999) Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects in MOSFETs with ultrathin oxides. IBM J Res Dev 43(3):327–337CrossRefGoogle Scholar
  27. 42.
    Yang N, Henson WK, Hauser JR, Wortman JJ (1999) Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices. IEEE T Electron Dev 46(7):1464–1471CrossRefGoogle Scholar
  28. 43.
    Choi C-H, Dutton RW (2004) Gate tunneling current and quantum effects in deep scaled MOSFETs. J Semiconduct Tech Sci 4(1):27–31Google Scholar
  29. 44.
    BSIM 4 users manual www.device.eecs.berkeley.edu
  30. 45.
    Philips MOS Model 11, www.nxp.com
  31. 46.
    Holm R (1951) The electric tunnel effect across thin insulator films in contacts. J Appl Phys 22:569–574MATHCrossRefGoogle Scholar
  32. 47.
    Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New YorkGoogle Scholar
  33. 48.
    Chaudhry A, Roy JN (2011) Analytical modeling of gate oxide leakage tunneling current in a MOSFET: a quantum mechanical study. Micro-Nano-Electron Technol 48(6):357–364Google Scholar
  34. 49.
    Lo S (1997) Quantum –mechanical modeling of electron tunneling current from the inversion layer of ultra- thin – oxide nMOSFET’s. IEEE Electron Devic Lett 18(5):209–211CrossRefGoogle Scholar
  35. 50.
    Chiah S (2005) Single piece poly crystalline silicon accumulation/depletion/inversion model with implicit/explicit surface potential solutions. Appl Phys Lett 86:202111–1–202111–3CrossRefGoogle Scholar
  36. 51.
    Habas P (1992) Investigation of the physical modeling of the gate depletion effect. IEEE T Electron Dev 39(6):1496–1500CrossRefGoogle Scholar
  37. 52.
    Arora N et al (1995) Modeling the polysilicon depletion effect and its impact on sub micrometer CMOS circuit performance. IEEE T Electron Dev 42(5):935–942CrossRefGoogle Scholar
  38. 53.
    Chaudhry A, Roy JN (2011) Gate oxide leakage in poly-depleted nanoscale-MOSFET: a quantum mechanical study. Int J Nanoelectronics Mater 4(2):93–100Google Scholar
  39. 54.
    ChangHoon Choi, Chidambaram PR, Rajesh Khamankar, Machala Charles F, Zhiping Yu, Dutton Robert W (2002) Dopant profile and gate geometric effects on polysilicon gate depletion in scaled MOS, IEEE T Electron Dev, 49(7)Google Scholar
  40. 55.
    Calvet LE, Wheeler RG, Reed MA (2002) Electron transport measurements of Schottky barrier inhomogeneities. Appl Phys Lett 80(10):1761–1763CrossRefGoogle Scholar
  41. 56.
    Chang-Hoon Choi, Ki-Young Nam, Zhiping Yu, Dutton RW Impact of gate direct tunneling current on circuit performance: a simulation study, IEEE T Electron Dev 48(12): 2823–2829Google Scholar
  42. 57.
    Chen J-S, Ker M-D (2009) Impact of gate leakage on performances of phase-locked loop circuit in nanoscale CMOS technology. IEEE T Electron Dev 56(8):1774–1779CrossRefGoogle Scholar
  43. 58.
    Arumi D, Rodriguez-Montanes R, Figueras J, Eichenberger S, Hora C, Kruseman B (2011) Gate leakage impact on full open defects in interconnect lines. IEEE T VLSI Syst 19(12):2209–2220CrossRefGoogle Scholar
  44. 59.
    Narasimhulu K, Ramgopal Rao V (2006) Analog circuit performance issues with aggressively scaled gate oxide CMOS technologies, 19th international conference on VLSI Design, 2006. (Held jointly with 5th international conference on Embedded Systems and Design)Google Scholar
  45. 60.
    Chaves F, Jiménez D, Suñé J (2012) Explicit model for the gate tunneling current in double-gate MOSFETs. Solid State Electron 68:93–97CrossRefGoogle Scholar
  46. 61.
    Darbandy G, Ritzenthaler R, Lime F, Garduño I, Estrada M, Cerdeira A, Iñiguez B (2010) Analytical modeling of the gate tunneling leakage for the determination of adequate high-k dielectrics in double-gate SOI MOSFETs at the 22 nm node. Solid State Electron 54(10):1083–1087CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Amit Chaudhry
    • 1
  1. 1.University Institute of Engineering and Technology Punjab UniversityChandigarhIndia

Personalised recommendations