Skip to main content
  • 2763 Accesses

Abstract

Computer-aided engineering (CAE) refers to the general use of software to aid in engineering tasks, in its broadest sense even including computer-aided design and computer-aided manufacturing; although in product design, CAD is ­perceived as the starting point for designing a part, CAE involves the simulations carried out upon a CAD part in order to verify geometries and materials, and CAM is linked to the simulations realized upon a CAD part to prepare manufacturing processes and to the automated control of machine tools during production.

Although CAE can involve the use of all kinds of software and computer-aided calculations, in product development and linked to computer-aided design, such calculations are normally carried out by application of the finite element method (FEM), whose generalization in the final decades of the twentieth century has been essential for promoting the incorporation of CAE analysis tools together with CAD software packages.

Such method allows solving complex engineering problems by using a mesh discretization of a continuous domain into a set of discrete elements (connected by nodes) and by transforming initial partial differential equations as well as integral equations into an approximate system of ordinary differential equations (forced to be valid in the nodes) for final numerical integration. This method is especially well suited for solving partial differential equations over complicated domain or geometries, when the domain changes during the whole simulation, when the desired precision varies over the system under study, or when the solution lacks smoothness.

This chapter provides an overall introduction to the possibilities of CAE tools and gives several examples of FEM simulations of different phenomena (including mechanic, dynamic, thermal, and fluidic cases) for studying its effects on organs and biostructures, medical appliances and biodevices in general, as well as the interactions between implants and organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On computer-Aided Design and Engineering Resources:

  2. 2.

    More linked to design tasks:

References

  • Banai, S., Muvhar, S.B., Parikh, K.H., Medina, A., Sievert, S., Seth, A., Tsehori, J., Paz, Y., Sheinfeld, A., Keren, G.: Coronary sinus reducer stent for the treatment of chronic refractory angina pectoris. J. Am. Coll. Cardiol. 49(17), 1783–1789 (2007)

    Article  Google Scholar 

  • Choi, A.P.C., Zheng, Y.P.: Estimation of Young’s modulus and Poisson’s ratio of soft tissue from indentation using two different-sized indentors: finite element analysis of the finite deformation effect. Med. Biol. Eng. Comput. 43(2), 258–264 (2005)

    Article  Google Scholar 

  • Coleman, S.: Determining the mechanical properties of eardrum through modeling. Six week project, Medical Biophysics 3970Z, The University of Western Ontario (2011)

    Google Scholar 

  • Dagum, P., Timek, T., Green, G.R., Daughters, G.T., Liang, D., Ingels, N.B., Miller, D.C.: Three-­dimensional geometric comparison of partial and complete flexible mitral annuloplasty rings. J. Thorac. Cardiovasc. Surg. 122(4), 665–673 (2001)

    Article  Google Scholar 

  • Díaz Lantada, A.: Metodología para el desarrollo de dispositivos médicos basados en polímeros activos como sensores y actuadores. Ph.D. thesis (Advisor: P. Lafont Morgado), Universidad Politécnica de Madrid (2009)

    Google Scholar 

  • Díaz Lantada, A.: Handbook of Active Materials for Medical Devices: Advances and Applications. PAN Stanford, Singapore (2012)

    Google Scholar 

  • Díaz Lantada, A., Lafont Morgado, P.: Rapid prototyping for biomedical engineering: current capabilities and challenges. Annu. Rev. Biomed. Eng. Singapore 14, 73–96 (2012)

    Article  Google Scholar 

  • Díaz Lantada, A., Valle-Fernández, R., Morgado, P.L., Muñoz-García, J., Muñoz Sanz, J.L., Munoz-Guijosa, J.M., Otero, J.E.: Development of personalized annuloplasty rings: combination of CT and CAD-CAM tools. Ann. Biomed. Eng. 36(1), 66–76 (2010)

    Google Scholar 

  • Fay, J.P., Puria, S., Steele, C.R.: The discordand eardrum. PNAS 103(52), 19743–19748 (2006)

    Article  Google Scholar 

  • Fernández Cid, P.: Mechanical properties of porous materials for tissue engineering. Master thesis (Advisors: J. Wu, A. Díaz Lantada), Durham University – Universidad Politécnica de Madrid (2012)

    Google Scholar 

  • Huang, S.K.S., Wilber, D.J.: Radiofrequency termal ablation of cardiac arrhythmias. Futura Publishing, New York (2000)

    Google Scholar 

  • Koncan, D., Rifel, J., Drevensek, G., Kocijancic, S., Ogorelec, S., Budinha, M.V.: Thermal conductivity of the porcine heart tissue. Pflügers Archiv Eur. J. Physiol. 440(5), 143–144 (2000)

    Article  Google Scholar 

  • Lorenzo Yustos, H., Lafont Morgado, P., Díaz Lantada, A., Fernández-Flórez Navidad, A., Muñoz Sanz, J.L., Munoz-Guijosa, J.M., Muñoz García, J., Echávarri Otero, J.: Towards complete product development teaching employing combined CAD-CAE-CAM technologies. Comput. Appl. Eng. Educ. 18(4), 661–668 (2010)

    Article  Google Scholar 

  • Lu, H., Luo, H., Gan, R.: Measurements of Young’s Modulus of Human Eardrum at High Strain Rates Using a Miniature Split Hopkison Tension Bar. Oklahoma State University, The University of Oklahoma. Oklahoma, USA (2007)

    Google Scholar 

  • Mirsky, I., Ghista, D.N., Sandler, H.: Cardiac Mechanics: Physiological, Clinical, and Mathematical Considerations. Wiley, New York (1974)

    Google Scholar 

  • Murray, C.D.: The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U.S.A. 12(3), 207–214 (1926a)

    Article  Google Scholar 

  • Murray, C.D.: The physiological principle of minimum work: II. Oxygen exchange in capillaries. Proc. Natl. Acad. Sci. U.S.A. 12(5), 299–304 (1926b)

    Article  Google Scholar 

  • Nakao, M.: Measurement of mechanical properties of eardrum, middle ear exudate and inner ear membranes. Sensor. Actuator. 83(1–3), 76–79 (2000)

    Article  Google Scholar 

  • Ojeda Diaz, C.: Estudio de la influencia de estabilidad primaria en el diseño de vástagos de prótesis de cadera personalizadas. Ph.D. thesis. Universidad Politécnica de Madrid (2009)

    Google Scholar 

  • Ojeda Díaz, C., Osuna López, J., Lafont Morgado, P., Díaz Lantada, A.: Estudio de la estabilidad primaria, influencia en el diseño de vástagos de prótesis femorales personalizadas: Aplicación a paciente específico. 3º Congresso Nacional de Biomecânica. Sociedade Portuguesa de Biomecânica. 11–12 Feb 2009 in Braganza (2009)

    Google Scholar 

  • Osuna, J.E.: Combinación de tecnologías para la optimización del desarrollo de prótesis. Master thesis. Universidad Politécnica de Madrid (2008)

    Google Scholar 

  • Shah, J., Dos Santos, I., Haemmerich, D., Valvano, J.W.: Instrument to measure the heat convection coefficient on the endothelial surface of arteries and veins. Med. Biol. Eng. Comput. 43(4), 522–527 (2006)

    Article  Google Scholar 

  • Tan, T., Pydimarri, R., Qi, G.: A Modal Analysis Interface Failure of THA Femoral Component. The University of Memphis (2004)

    Google Scholar 

  • Tangwongsan, C., Will, J.A., Webster, J.G., Meredith, K.L., Mahvi, D.M.: In vivo measurement of swine endocardial convective heat transfer coefficient. IEEE Trans. Biomed. Eng. 51(8), 1478–1486 (2004)

    Article  Google Scholar 

  • Williams, M.R., Knaut, M., Berube, D., Oz, M.C.: Application of microwave energy in cardiac tissue ablation: from in vitro analyses to clinical use. Ann. Thorac. Surg. 74, 1500–1505 (2002)

    Article  Google Scholar 

  • Yasar, O., Martin, M., Harris, C., Sun, S., Starly, B.: Layered Fabrication of Branched Networks Using Lindenmayer Systems. University of Oklahoma (2007)

    Google Scholar 

  • Zamir, M.: Arterial branching within the confines of fractal L-system formalism. J. Gen. Physiol. 118(3), 267–276 (2001)

    Article  Google Scholar 

  • Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals, 6th edn. Butterworth-Heinemann, Oxford (2005)

    MATH  Google Scholar 

Some Interesting Related Websites,

More linked to calculation tasks:

On Medical Imaging and Design Based on Medical Images

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Díaz Lantada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lantada, A.D. (2013). Computer-Aided Engineering Resources and FEM for Biodevices. In: Lantada, A. (eds) Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6789-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6789-2_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-6788-5

  • Online ISBN: 978-1-4614-6789-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics