Advertisement

Stochastic Processes

  • Michał Kisielewicz
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 80)

Abstract

In this chapter we give a survey of concepts of the theory of stochastic processes. It is assumed that the basic notions of measure and probability theories are known to the reader.

References

  1. 21.
    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1976)Google Scholar
  2. 31.
    Friedman, A.: Stochastic Differential Equations and Applications. Academic, New York (1975)zbMATHGoogle Scholar
  3. 33.
    Gihman, I.I., Skorohod, A.V.: The Theory of Stochastic Processes I–III. Springer, Berlin (1974, 1975, 1979)Google Scholar
  4. 43.
    Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North Holland Publ., Amsterdam (1981)zbMATHGoogle Scholar
  5. 44.
    Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, New York (1987)zbMATHCrossRefGoogle Scholar
  6. 47.
    Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1991)zbMATHGoogle Scholar
  7. 60.
    Kisielewicz, M.: Stochastic differential inclusions and diffusion processes. J. Math. Anal. Appl. 334, 1039–1054 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 61.
    Kisielewicz, M.: Stochastic representation of partial differential inclusions. J. Math. Anal. Appl. 353, 592–606 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 68.
    Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, New York (1990)zbMATHGoogle Scholar
  10. 72.
    Lipcer, R.S., Shiryaev, A.N.: Statistics of Stochastic Processes. PWN, Warszawa (1981) (in Polish)Google Scholar
  11. 86.
    Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (1998)CrossRefGoogle Scholar
  12. 89.
    Protter, P.: Stochastic Integration and Differential Equations. Springer, Berlin (1990)zbMATHCrossRefGoogle Scholar
  13. 94.
    Strook, D.W., Varadhan, S.R.S.: Diffusion processes with continuous coefficients. I, II. Comm. Pure Appl. Math. 22(345–400), 479–530 (1969)Google Scholar
  14. 95.
    Strook, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michał Kisielewicz
    • 1
  1. 1.Faculty of MathematicsUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations