The Finite Element Analysis Study of the Laser Lift-Off (LLO) of III-Nitride Compound

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 234)

Abstract

ANSYS was used to simulate the temperature field of the nitride semiconductor compound in the laser lift-off (LLO) process. One-dimension thermal conduction model is formulated. When the fluence is 107mJ/cm2, the InN temperature starts to rise up, coupled with a large temperature gradient across the InN film, to above 600°C for a region within 108nm below the irradiated InN/sapphire interface. The diameter of the beam spot is 300μm, but the diameter of the decomposed area is around 100μm for InN due to Gaussian beam shape. For GaN, LLO can be achieved by using either a single pulse of 350mJ/cm2 fluence or multiple pulses of fluence down to 95mJ/cm2. The result shows that when six successive 95mJ/cm2 pulses are used, the thermal stress can be greatly reduced from 0.929GPa in the case of a single 350mJ/cm2 pulse to 0.332GPa.

Keywords

Laser lift-off ANSYS Temperature field InN GaN 

Notes

Acknowledgments

Authors acknowledge the financial support by the national science commission of ROC, serial number NSC100-2221-E-018-022.

References

  1. 1.
    Yablonovitch E, Sands T, Hwang DM, Schnitzer I, Gmitter TJ, Shastry SK, Hill DS, Fan JCC (1991) Van der Waals bonding of GaAs on Pd leads to a permanent, solid-phase-topotaxial, metallurgical bond. Appl Phys Lett 59:3159–3161CrossRefGoogle Scholar
  2. 2.
    Detchprohm T, Amano H, Hiramatsu K, Akasaki I (1993) The growth of thick GaN film on sapphire substrate by using ZnO buffer layer. J Cryst Growth 128:384–390CrossRefGoogle Scholar
  3. 3.
    Kelly MK, Ambacher O, Dalheimer B, Groos G, Dimitrov R, Angerer H, Stutzmann M (1996) Optical patterning of GaN films. Appl Phys Lett 69:1749–1751CrossRefGoogle Scholar
  4. 4.
    Wong WS, Sands T, Cheung NW (1998) Damage-free separation of GaN thin films from sapphire substrates. Appl Phys Lett 72:599–601CrossRefGoogle Scholar
  5. 5.
    Wong WS, Kneissl M, Mei P, Treat DW, Teepe M, Johnson NM (2001) Continuous-wave InGaN multiple-quantum-well laser diodes on copper substrates. Appl Phys Lett 78:1198–1200CrossRefGoogle Scholar
  6. 6.
    Ho HP, Lo KC, Siu GG, Surya C, Li KF, Cheah KW (2003) Raman and photoluminescence spectroscopy of free-standing GaN separated from sapphire substrates by 532 nm Nd:YAG laser lift-off. Mater Chem Phys 81:99–103CrossRefGoogle Scholar
  7. 7.
    Piprek J (2003) Semiconductor optoelectronic devices: introduction to physics and simulation. Academic, Amsterdam/BostonGoogle Scholar
  8. 8.
    Reeber RR, Wang K (2001) High temperature elastic constant prediction of some group III-nitrides. MRS Internet J Nitride Semicond Res 6:1–5Google Scholar
  9. 9.
    Zou J, Kotchetkov D, Balandin AA, Florescu DI, Pollak FH (2002) Thermal conductivity of GaN films: effects of impurities and dislocations. J Appl Phys 92:2534–2539CrossRefGoogle Scholar
  10. 10.
    Nipko JC, Loong C-K, Balkas CM, Davis RF (1998) Phonon density of states of bulk gallium nitride. Appl Phys Lett 73:34–36CrossRefGoogle Scholar
  11. 11.
    Kisielowski C, Kruger J, Ruvimov S, Suski T, Ager JW III, Jones E, Liliental-Weber Z, Rubin M, Weber ER, Bremser MD, Davis RF (1996) Strain-related phenomena in GaN thin films. Phys Rev B 54:17745–17753CrossRefGoogle Scholar
  12. 12.
    Roder C, Einfeldt S, Figge S, Hommel D (2005) Temperature dependence of the thermal expansion of GaN. Phys Rev B 72:085218–085223CrossRefGoogle Scholar
  13. 13.
    Krukowski S, Witek A, Adamczyk J, Jun J, Bockowski M, Grzegory I, Lucznik B, Nowak G, Wroblewski M, Presz A, Gierlotka S, Stelmach S, Palosz B, Porowski S, Zinn P (1998) Thermal properties of indium nitride. J Phys Chem Solids 59:289–295CrossRefGoogle Scholar
  14. 14.
    Davydov VY, Emtsev VV, Goncharuk IN, Smirnov AN, Petrikov VD, Mamutin VV, Vekshin VA, Ivanov SV, Smirnov MB, Inushima T (1999) Experimental and theoretical studies of phonons in hexagonal InN. Appl Phys Lett 75:3297–3299CrossRefGoogle Scholar
  15. 15.
    Liang LW, Tsen KT, Poweleit C, Ferry DK, Tsen S-WD, Lu H, Schaff WJ (2005) Non-equilibrium carrier transport in a high-quality InN film grown on GaN. Phys Status Solidi (c) 2:2289–2300CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mechatronics EngineeringNational Changhua University of EducationChanghuaTaiwan
  2. 2.Taichung Thermal Power PlantTaiwan Power CompanyTaichungTaiwan
  3. 3.Department of Electronic EngineeringNational Changhua University of EducationChanghuaTaiwan

Personalised recommendations