Skip to main content

Written in Stone: The Fossil Record of Early Eukaryotes

  • Chapter
  • First Online:
Evolution from the Galapagos

Part of the book series: Social and Ecological Interactions in the Galapagos Islands ((SESGI,volume 2))

Abstract

Eukaryotes represent one of the three major domains of living organisms. They diverged in the Paleoproterozoic and possibly Neoarchean Era, as indicated by morphologically complex microfossils and somewhat controversial molecular fossils. The early evolutionary history of the eukaryotes, as revealed by the Neoarchean–Proterozoic fossil record, can be described in three stages. Stage I (Neoarchean–Mesoproterozoic) is characterized by a relatively low diversity of eukaryotes, whose exact phylogenetic position within the eukaryotic phylogenetic tree is uncertain. In Stage II (late Mesoproterozoic–early Neoproterozoic), numerous phylogenetically constrained eukaryotic lineages evolved. These include the red algae, green algae, chromophyte algae, euglyphid amoebae, lobose amoebae, and possibly fungi. Their phylogenetic positions in the eukaryotic tree indicate that eukaryotes must have undergone some degree of phylogenetic divergence to give rise to the major clades such as plants (green and red algae), chromalveolates, rhizarians, amoebozoans, and possibly opisthokonts. Stage III (Ediacaran Period) is characterized by a significant increase in the diversity of eukaryotes, particularly multicellular eukaryotes including animals. Animals may have diverged in the early Ediacaran Period or earlier, but macroscopic bilaterian animals and biomineralizing animals did not appear in the fossil record until the late Ediacaran Period. This sequence of eukaryotic evolution, as recorded in the rock record, is broadly consistent with predictions from the molecular phylogeny of eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    Article  Google Scholar 

  • Bengtson S, Budd G (2004) Comment on small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 306:1290a-1291a

    Article  Google Scholar 

  • Brinkmann H, Philippe H (2007) The diversity of eukaryotes and the root of the eukaryotic tree. In: JĂ©kely G (ed) Eukaryotic membranes and cytoskeleton: origins and evolution. Springer, New York, pp 20–37

    Chapter  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  Google Scholar 

  • Brocks JJ, Buick R, Logan GA, Summons RE (2003) Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta 67:4289–4319

    Article  Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404

    Article  Google Scholar 

  • Butterfield NJ (2004) A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 30:231–252

    Article  Google Scholar 

  • Butterfield NJ (2005a) Probable proterozoic fungi. Paleobiology 31:165–182

    Article  Google Scholar 

  • Butterfield NJ (2005b) Reconstructing a complex early Neoproterozoic eukaryote, Wynniatt Formation, arctic Canada. Lethaia 38:155–169

    Article  Google Scholar 

  • Butterfield NJ, Knoll AH, Swett K (1994) Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils Strata 34:1–84

    Google Scholar 

  • Cavalier-Smith T (2010a) Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett 6(3):342–345

    Article  Google Scholar 

  • Cavalier-Smith T (2010b) Deep phylogeny, ancestral groups and the four ages of life. Philos Trans R Soc Lond B Biol Sci 365:111–132

    Article  Google Scholar 

  • Chen J (2005) The dawn of animal world. Jiangsu Science and Technology Press, Nanjing

    Google Scholar 

  • Chen J-Y, Bottjer DJ, Oliveri P, Dornbos SQ, Gao F, Ruffins S, Chi H, Li C-W, Davidson EH (2004) Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 305:218–222

    Article  Google Scholar 

  • Chen J-Y, Bottjer DJ, Davidson EH, Dornbos SQ, Gao X, Yang Y-H, Li C-W, Li G, Wang X-Q, Xian D-C, Wu H-J, Hwu Y-K, Tafforeau P (2006) Phosphatized polar lobe-forming embryos from the Precambrian of southwest China. Science 312:1644–1646

    Article  Google Scholar 

  • Chen J-Y, Bottjer DJ, Davidson EH, Li G, Gao F, Cameron RA, Hadfield MG, Xian D-C, Tafforeau P, Jia Q-J, Sugiyama H, Tang R (2009) Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: phylogenetic diversity and evolutionary implications. Precambrian Res 173:191–200

    Article  Google Scholar 

  • Dong L, Xiao S, Shen B, Yuan X, Yan X, Peng Y (2008) Restudy of the worm-like carbonaceous compression fossils Protoarenicola, Pararenicola, and Sinosabellidites from early Neoproterozoic successions in North China. Palaeogeogr Palaeoclimatol Palaeoecol 258:138–161

    Article  Google Scholar 

  • Du R, Tian L (1986) The macroalgal fossils of the Qingbaikou period in the Yanshan range. Hebei Science and Technology Press, Shijiazhuang

    Google Scholar 

  • Dutkiewicz A, Volk H, George SC, Ridley J, Buick R (2006) Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geology 34:437–440

    Article  Google Scholar 

  • Fedonkin MA, Gehling JG, Grey K, Narbonne GM, Vickers-Rich P (2007a) The rise of animals: evolution and diversification of the kingdom Animalia. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Fedonkin MA, Simonetta A, Ivantsov AY (2007b) New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran Biota. Geological Society of London Special Publications 286, London, pp 157–179

    Google Scholar 

  • Fehling J, Stoecker D, Baldauf SL (2007) Photosynthesis and the eukaryote tree of life. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier Academic Press, Burlington, pp 76–107

    Google Scholar 

  • Gnilovskaya MB, Veis AF, Bekker AY, Olovyanishnikov VG, Raaben ME (2000) Pre-Ediacarian fauna from Timan (Annelidomorphs of the late Riphean). Stratigr Geol Correl 8:327–352

    Google Scholar 

  • Grant SWF (1990) Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. Am J Sci 290-A:261–294

    Google Scholar 

  • Grey K (2005) Ediacaran palynology of Australia. Memo Assoc Austral Palaeontol 31:1–439

    Google Scholar 

  • Grotzinger JP, Watters WA, Knoll AH (2000) Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26:334–359

    Article  Google Scholar 

  • Hackett JD, Yoon HS, Butterfield NJ, Sanderson MJ, Bhattacharya D (2007) Plastid endosymbiosis: sources and timing of the major events. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier Academic Press, Burlington, pp 109–132

    Chapter  Google Scholar 

  • Hagadorn JW, Xiao S, Donoghue PCJ, Bengtson S, Gostling NJ, Pawlowska M, Raff EC, Raff RA, Turner FR, Yin C, Zhou C, Yuan X, McFeely MB, Stampanoni M, Nealson KH (2006) Cellular and subcellular structure of Neoproterozoic embryos. Science 314:291–294

    Article  Google Scholar 

  • Han T-M, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee Iron-Formation, Michigan. Science 257:232–235

    Article  Google Scholar 

  • Hermann TN (1990) Organic world billion year ago. Nauka, Leningrad

    Google Scholar 

  • Hoffman PF (2009) Pan-glacial—a third state in the climate system. Geol Today 25:107–114

    Article  Google Scholar 

  • Hofmann HJ (1985) The mid-Proterozoic Little Dal macrobiota, Mackenzie Mountains, north-west Canada. Palaeontology 28:331–354

    Google Scholar 

  • Hofmann HJ (1999) Global distribution of the Proterozoic sphaeromorph acritarch Valeria lophostriata (Jankauskas). Acta Micropalaeontol Sin 16:215–224

    Google Scholar 

  • Hofmann H, Chen J (1981) Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, northern China. Can J Earth Sci 18:443–447

    Article  Google Scholar 

  • Hofmann HJ, Jackson GD (1994) Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada. Paleontol Soc Memoir 37:1–35

    Google Scholar 

  • Hofmann HJ, Jackson GD (1996) Notes on the geology and micropaleontology of the Proterozoic Thule Group, Ellesmere Island, Canada and North-West Greenland. Geol Surv Canada Bull 495:1–26

    Google Scholar 

  • Hua H, Chen Z, Yuan X, Zhang L, Xiao S (2005) Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology 33:277–280

    Article  Google Scholar 

  • Huntley JW, Xiao S, Kowalewski M (2006) 1.3 billion years of acritarch history: an empirical morphospace approach. Precambrian Res 144:52–68

    Article  Google Scholar 

  • Ivantsov AY (2009) New reconstruction of Kimberella, problematic Vendian metazoan. Paleontol J 43:601–611

    Article  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69

    Article  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2:121–132

    Article  Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938

    Article  Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 22:670–676

    Article  Google Scholar 

  • Kirschvink JL, Kopp RE (2008) Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem. Philos T Roy Soc Lond B Biol Sci 363:2755–2765

    Article  Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos T Roy Soc Lond B Biol Sci 361:1023–1038

    Article  Google Scholar 

  • Laflamme M, Xiao S, Kowalewski M (2009) Osmotrophy in modular Ediacara organisms. Proc Natl Acad Sci U S A 106:14438–14443

    Article  Google Scholar 

  • Lamb DM, Awramik SM, Chapman DJ, Zhu S (2009) Evidence for eukaryotic diversification in the ~1800 million-year-old Changzhougou Formation, North China. Precambrian Res 173:93–104

    Article  Google Scholar 

  • Liu AG, McIlroy D, Brasier MD (2010) First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology 38:123–126

    Article  Google Scholar 

  • Macdonald FA, Cohen PA, Dudás FĂ–, Schrag DP (2010a) Early Neoproterozoic scale microfossils in the Lower Tindir Group of Alaska and the Yukon Territory. Geology 38:143–146

    Article  Google Scholar 

  • Macdonald FA, Schmitz MD, Crowley JL, Roots CF, Jones DS, Maloof AC, Strauss JV, Cohen PA, Johnston DT, Schrag DP (2010b) Calibrating the cryogenian. Science 327:1241–1243

    Article  Google Scholar 

  • Mus MM, MoczydĹ‚owska M (2000) Internal morphology and taphonomic history of the Neoproterozoic vase-shaped microfossils from the Visingsö Group, Sweden. Norsk Geologisk Tidsskrift 80:213–228

    Article  Google Scholar 

  • Nagovitsin K (2009) Tappania-bearing association of the Siberian platform: biodiversity, stratigraphic position and geochronological constraints. Precambrian Res 173:137–145

    Article  Google Scholar 

  • Narbonne GM (2004) Modular construction of early Ediacaran complex life forms. Science 305:1141–1144

    Article  Google Scholar 

  • Narbonne GM (2005) The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Plan Sci 33:421–442

    Article  Google Scholar 

  • Ogg JG, Ogg G, Goldstein FM (2008) The concise geological time scale. Cambridge University Press, Cambridge

    Google Scholar 

  • Peng Y, Bao H, Yuan X (2009) New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res 168:223–232

    Article  Google Scholar 

  • Philippe H, Lopez P, Brinkmann H, Budin K, Germot A, Laurent J, Moreira D, MĂĽller M, Le Guyader L (2000) Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc Biol Sci 267:1213–1221

    Article  Google Scholar 

  • Porter SM (2006) The Proterozoic fossil record of heterotrophic eukaryotes. In: Xiao S, Kaufman AJ (eds) Neoproterozoic geobiology and paleobiology. Springer, Dordrecht, pp 1–21

    Chapter  Google Scholar 

  • Porter SM, Knoll AH (2000) Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26:360–385

    Article  Google Scholar 

  • Porter SM, Meisterfeld R, Knoll AH (2003) Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. J Paleontol 77:409–429

    Article  Google Scholar 

  • Prasad B, Asher R (2001) Acritarch biostratigraphy and lithostratigraphic classification of Proterozoic and lower Paleozoic sediments (pre-unconformity sequence) of Ganga Basin. India Paleontogr Ind 5:1–151

    Google Scholar 

  • Prasad B, Uniyal SN, Asher R (2005) Organic-walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India. Palaeobotanist 54:13–60

    Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  Google Scholar 

  • Retallack GJ (2007) Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil. Alcheringa 31:215–240

    Article  Google Scholar 

  • Roger AJ, Simpson AGB (2009) Evolution: revisiting the root of the eukaryote tree. Curr Biol 19:R165–R167, doi:10.1016/j.cub.2008.12.032

    Google Scholar 

  • Schiffbauer J, Yin L, Bodnar RJ, Kaufman AJ, Meng F, Hu J, Shen B, Yuan X, Bao H, Xiao S (2007) Ultrastructural and geochemical characterization of Archean-Paleoproterozoic graphite particles: implications for recognizing traces of life in highly metamorphosed rocks. Astrobiology 7:684–704

    Article  Google Scholar 

  • Schulz HN, Jørgensen BB (2001) Big bacteria. Annu Rev Microbiol 55:105–137

    Article  Google Scholar 

  • Sharma M, Shukla Y (2009) Taxonomy and affinity of Early Mesoproterozoic megascopic helically coiled and related fossils from the Rohtas Formation, the Vindhyan Supergroup, India. Precambrian Res 193:105–122

    Article  Google Scholar 

  • Sherman LS, Waldbauer J, Summons RE (2007) Methods for biomarker analyses of high maturity Precambrian rocks. Org Geochem 38:1987–2000

    Article  Google Scholar 

  • Sperling EA, Vinther J (2010) A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol Dev 12:201–209

    Article  Google Scholar 

  • Stechmann A, Cavalier-Smith T (2002) Rooting the eukaryote tree by using a derived gene fusion. Science 297:89–91

    Article  Google Scholar 

  • Sun W, Wang G, Zhou B (1986) Macroscopic worm-like body fossils from the Upper Precambrian (900–700 Ma), Huainan district, Anhui, China and their stratigraphic and evolutionary significance. Precambrian Res 31:377–403

    Article  Google Scholar 

  • Ventura GT, Kenig F, Reddy CM, Schieber J, Frysinger GS, Nelson RK, Dinel E, Gaines RB, Schaeffer P (2007) Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere. Proc Natl Acad Sci U S A 104:14260–14265

    Article  Google Scholar 

  • Vorob’eva NG, Sergeev VN, Chumakov NM (2008) New finds of early Vendian microfossils in the Ura Formation: revision of the Patom Supergroup Age, middle Siberia. Dokl Earth Sci 419A:411–416

    Article  Google Scholar 

  • Vorob’eva NG, Sergeev VN, Knoll AH (2009) Neoproterozoic microfossils from the northeastern margin of the East European Platform. J Paleontol 83:161–196

    Article  Google Scholar 

  • Walter MR, Du R, Horodyski RJ (1990) Coiled carbonaceous megafossils from the middle Proterozoic of Jixian (Tianjin) and Montana. Am J Sci 290-A:133–148

    Google Scholar 

  • Wood RA, Grotzinger JP, Dickson JAD (2002) Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296:2383–2386

    Article  Google Scholar 

  • Xiao S (2004a) New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges, South China). J Paleontol 78:393–401

    Article  Google Scholar 

  • Xiao S (2004b) Neoproterozoic glaciations and the fossil record. In: Jenkins GS, McMenamin M, Sohl LE, McKay CP (eds) The extreme proterozoic: geology, geochemistry, and climate. American Geophysical Union (AGU), Washington, pp 199–214

    Chapter  Google Scholar 

  • Xiao S, Dong L (2006) On the morphological and ecological history of Proterozoic macroalgae. In: Xiao S, Kaufman AJ (eds) Neoproterozoic Geobiology and Paleobiology. Springer, Dordrecht, pp 57–90

    Chapter  Google Scholar 

  • Xiao S, Laflamme M (2009) On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol 24:31–40

    Article  Google Scholar 

  • Xiao S, Knoll AH, Kaufman AJ, Yin L, Zhang Y (1997) Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Res 84:197–220

    Article  Google Scholar 

  • Xiao S, Zhang Y, Knoll AH (1998) Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553–558

    Article  Google Scholar 

  • Xiao S, Yuan X, Steiner M, Knoll AH (2002) Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China. J Paleontol 76:347–376

    Article  Google Scholar 

  • Xiao S, Knoll AH, Yuan X, Pueschel CM (2004) Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. Am J Botany 91:214–227

    Article  Google Scholar 

  • Yan Y, Liu Z (1993) Significance of eucaryotic organisms in the microfossil flora of the Changcheng System. Acta Micropalaeontol Sin 10:167–180

    Google Scholar 

  • Yan Y (1995) Discovery and preliminary study of megascopic algae (1700 Ma) from the Tuanshanzi Formation in Jixian, China. Acta Micropalaeontol Sin 12:107–126

    Google Scholar 

  • Yin L, Yuan X, Meng F, Hu J (2005) Protists of the upper Mesoproterozoic Ruyang Group in Shanxi Province, China. Precambrian Res 141:49–66

    Article  Google Scholar 

  • Yin L, Zhu M, Knoll AH, Yuan X, Zhang J, Hu J (2007) Doushantuo embryos preserved inside diapause egg cysts. Nature 446:661–663

    Article  Google Scholar 

  • Yuan X, Xiao S, Yin L, Knoll AH, Zhou C, Mu X (2002) Doushantuo fossils: life on the eve of animal radiation. China University of Science and Technology Press, China

    Google Scholar 

  • Zhang Y, Yin L, Xiao S, Knoll AH (1998) Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. J Paleontol 72(Supp 4):1–52

    Google Scholar 

  • Zhu M, Gehling JG, Xiao S, Zhao Y-L, Droser M (2008) Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology 36:867–870

    Article  Google Scholar 

  • Zhu S, Chen H (1995) Megascopic multicellular organisms from the 1700-million-year- old Tuanshanzi Formation in the Jixian area, North China. Science 270:620–622

    Article  Google Scholar 

  • Zhu S, Sun S, Huang X, He Y, Zhu G, Sun L, Zhang K (2000) Discovery of carbonaceous compressions and their multicellular tissues from the Changzhougou Formation (1800 Ma) in the Yanshan Range, North China. Chin Sci Bull 45:841–846

    Article  Google Scholar 

Download references

Acknowledgments

National Science Foundation, NASA Exobiology and Evolutionary Biology Program, and National Natural Science Foundation of China provided support for my research. Nicholas J. Butterfield, Mikhail Fedonkin, Hong Hua, Andrew H. Knoll, Konstantin Nagovitsin, Yongbo Peng, Susannah M. Porter, Lifu Tian, Xunlai Yuan, and Maoyan Zhu kindly provided photographs used in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhai Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xiao, S. (2013). Written in Stone: The Fossil Record of Early Eukaryotes. In: Trueba, G., MontĂşfar, C. (eds) Evolution from the Galapagos. Social and Ecological Interactions in the Galapagos Islands, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6732-8_8

Download citation

Publish with us

Policies and ethics