Advertisement

Communities in Evolving Networks: Definitions, Detection, and Analysis Techniques

  • Thomas Aynaud
  • Eric Fleury
  • Jean-Loup Guillaume
  • Qinna Wang
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Complex networks can often be divided in dense sub-networks called communities. These communities are crucial in understanding the underlying structure of these networks and may have applications in data mining or visualization for instance. In this chapter, a survey of recent advances in the definition, the detection and the analysis of these communities in the particular case of evolving networks has been carried out.

Keywords

Community Structure Mutual Information Community Evolution Community Detection Core Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work is supported in part by the French National Research Agency contract DynGraph ANR-10-JCJC-0202.

References

  1. [1].
    J.I. Alvarez-hamelin, A. Barrat, A. Vespignani, Large scale networks fingerprinting and visualization using the k-core decomposition, in Advances in Neural Information Processing Systems 18 (MIT Press, 2006), pp. 41–50Google Scholar
  2. [2].
    S. White, P. Smyth, A spectral clustering approach to finding communities in graphs, in SIAM International Conference on Data Mining (2005)Google Scholar
  3. [3].
    S. Asur, S. Parthasarathy, D. Ucar, An event-based framework for characterizing the evolutionary behavior of interaction graphs, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD, 2007), 978-1-59593-609-7, San Jose, CA, pp. 913–921. http://doi.acm.org/10.1145/1281192.1281290
  4. [4].
    T. Aynaud, J.-L. Guillaume, Long range community detection, LAWDN - Latin-American Workshop on Dynamic Networks, INTECIN - Facultad de Ingeniería (U.B.A.) - I.T.B.A, p. 4 (2010). http://hal.inria.fr/inria-00531750/PDF/lawdn2010%5C;_submission%5C;_5.pdf
  5. [5].
    L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan, Group formation in large social networks: membership, growth, and evolution, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 54, 2006Google Scholar
  6. [6].
    D.A. Bader, K. Madduri, Gtgraph: A synthetic graph generator suite (2006). http://www.cse.psu.edu/~madduri/software/GTgraph/index.html
  7. [7].
    Y. Bar-Yam, Dynamic of Complex Systems. Addison-Wesley stydies in nonlinearity. The Advanced Book Program (Westview Press, Boulder, 1997), p. 848., ISBN 0813341213, 9780813341217Google Scholar
  8. [8].
    M. Beiró, J. Busch, Visualizing communities in dynamic networks, in Latin American Workshop on Dynamic Networks, vol. 1, 2010Google Scholar
  9. [9].
    R. Bekkerman, A. Mccallum, G. Huang, Automatic Categorization of Email into Folders: Benchmark Experiments on Enron and SRI Corpora. Center for Intelligent Information Retrieval, Department of Computer Science, University of Massachusetts Amherst, Technical Report IR (2004) pp. 4–6Google Scholar
  10. [10].
    J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Kluwer Academic, Norwell, MA, 1981)MATHCrossRefGoogle Scholar
  11. [11].
    V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. J. Stat. Mech. Theory Experiment 2008(10), P10008 (2008). http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
  12. [12].
    J. Camacho, R. Guimerá, L.A.N. Amaral, Robust patterns in food web structure. Phys. Rev. Lett. 88(22), 228102 (2002)CrossRefGoogle Scholar
  13. [13].
    D. Chakrabarti, S. Papadimitriou, D.S. Modha, C. Faloutsos, Fully automatic cross-associations, in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04 (ACM, New York, NY, 2004), pp. 79–88Google Scholar
  14. [14].
    D. Chakrabarti, Y. Zhan, C. Faloutsos, R-mat: A recursive model for graph mining, in In SDM, 2004Google Scholar
  15. [15].
    J. Chen, B. Yuan, Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22(18), 2283–2290 (2006)CrossRefGoogle Scholar
  16. [16].
    Z. Chen, K.a. Wilson, Y. Jin, W. Hendrix, N.F. Samatova, Detecting and tracking community dynamics in evolutionary networks, in 2010 IEEE International Conference on Data Mining Workshops, pp. 318–327, Dec. 2010Google Scholar
  17. [17].
    Y. Chi, S. Zhu, X. Song, J. Tatemura, B.L. Tseng, Structural and temporal analysis of the blogosphere through community factorization, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’07, p. 163, 2007Google Scholar
  18. [18].
    A. Condon, R.M. Karp, Algorithms for graph partitioning on the planted partition model. Random Struct. Algorithm 18, 116–140 (1999)MathSciNetCrossRefGoogle Scholar
  19. [19].
    K. Crawford, Presented at Oxford Internet Institute’s A Decade in Internet Time: Symposium on the Dynamics of the Internet and Society, Six provocations for big data. Social Science Research Network Working Paper Series (13 September 2011) Computer 1–17 (2011)Google Scholar
  20. [20].
    L. Danon, A. Díaz-Guilera, J. Duch, A. Arenas, Comparing community structure identification. J. Stat. Mech. Theor Exp. 2005(09), P09008 (2005)Google Scholar
  21. [21].
    T. Dinh, I. Shin, N. Thai, M. Thai, A general approach for modules identification in evolving networks. Dynam. Inform. 40(4), 83–100 (2010)MathSciNetGoogle Scholar
  22. [22].
    Y. Dourisboure, F. Geraci, M. Pellegrini, Extraction and classification of dense communities in the web, in Proceedings of the 16th International Conference on World Wide Web, WWW ’07 (ACM, New York, NY, 2007), pp. 461–470Google Scholar
  23. [23].
    D. Duan, Y. Li, Y. Jin, Z. Lu, Community mining on dynamic weighted directed graphs, in Proceeding of the 1st ACM International Workshop on Complex Networks Meet Information and Knowledge Management (ACM, 2009), pp. 11–18Google Scholar
  24. [24].
    H. Ebel, L.-I. Mielsch, S. Bornholdt, Scale-free topology of e-mail networks. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 66(3 Pt 2A), 035103 (2002)Google Scholar
  25. [25].
    B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York, 1993)MATHGoogle Scholar
  26. [26].
    N.B. Ellison, C. Steinfield, C. Lampe, The benefits of facebook friends: Social capital and college students use of online social network sites. J. Comput. Mediat. Comm. 12(4), 1143–1168 (2007)CrossRefGoogle Scholar
  27. [27].
    M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, X. Xu, Incremental clustering for mining in a data warehousing environment, in Proceedings of 24rd International Conference on Very Large Data Bases, VLDB’98 ed. by A. Gupta, O. Shmueli, J. Widom (Morgan Kaufmann, New York City, New York, 1998), pp. 323–333Google Scholar
  28. [28].
    M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise in Conference on Knowledge Discovery and Data Mining (AAAI Press, 1996), pp. 226–231Google Scholar
  29. [29].
    T. Falkowski, A. Barth, M. Spiliopoulou, Studying community dynamics with an incremental graph mining algorithm, in Proc. of the 14 th Americas Conference on Information Systems (AMCIS 2008), pp. 1–11, 2008Google Scholar
  30. [30].
    T. Falkowski, M. Spiliopoulou, Data mining for community dynamics. Kunstliche Intelligenz 3, 23–29 (2007)Google Scholar
  31. [31].
    T. Falkowski, M. Spiliopoulou, Users in volatile communities: Studying active participation and community evolution. Lect. Note Comput. Sci. 4511, 47 (2007)CrossRefGoogle Scholar
  32. [32].
    S. Fortunato, Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  33. [33].
    S. Fortunato, M. Barthelemy, Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104(1), 36–41 (2007)CrossRefGoogle Scholar
  34. [34].
    E. Gabrilovich, S. Markovitch, Computing semantic relatedness using wikipedia-based explicit semantic analysis, in Proceedings of The Twentieth International Joint Conference for Artificial Intelligence, pp. 1606–1611, Hyderabad, India, 2007Google Scholar
  35. [35].
    L.C. Giles, K. Bollacker, S. Lawrence, Citeseer: an automatic citation indexing system, in The Third ACM Conference on Digital Libraries, (ACM Press, Pittsburgh, 1998), pp. 89–98Google Scholar
  36. [36].
    M. Girvan, M.E.J. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)MathSciNetMATHCrossRefGoogle Scholar
  37. [37].
    P. Gongla, C.R. Rizzuto, Where did that community go? - communities of practice that disappear, in Knowledge Networks: Innovation Through Communities of Practice, ed. by P. Hildreth, C. Kimble (Idea Group, Hershey, PA, 2004)Google Scholar
  38. [38].
    R. Görke, P. Maillard, C. Staudt, Modularity-driven clustering of dynamic graphs. In: Proceedings of the 9th International Symposium on Experimental Algorithms (SEA’10), Lecture Notes in Computer Science, vol. 6049 (Springer, 2010), pp. 436–448Google Scholar
  39. [39].
    D. Greene, D. Doyle, P. Cunningham, Tracking the evolution of communities in dynamic social networks, in 2010 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2010), 9–11 August 2010, Odense, Denmark, N. Memon, R. Alhajj. The Institute of Electrical and Electronics Engineers, Inc. (IEEE, 2010), pp. 9–11. ISBN: 978-1-4244-7787-6Google Scholar
  40. [40].
    P.D. Grnwald, I.J. Myung, M.A. Pitt, Advances in Minimum Description Length: Theory and Applications (Neural Information Processing series) (MIT Press, 2005), 444 p. ISBN 0262072629, 9780262072625Google Scholar
  41. [41].
    R. Guimerá, L.A.N. Amaral, Cartography of complex networks: modules and universal roles. J. Stat. Mech. 2005(P02001), nihpa35573 (2005)Google Scholar
  42. [42].
    R. Guimerá, M. Sales-Pardo, L.A.N. Amaral, Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 70(2 Pt 2), 025101 (2004)CrossRefGoogle Scholar
  43. [43].
    L.H. Hartwell, J.J. Hopfield, S. Leibler, A.W. Murray, From molecular to modular cell biology. Nature 402(6761), 47 (1999)Google Scholar
  44. [44].
    J. Hopcroft, O. Khan, B. Kulis, B. Selman, Tracking evolving communities in large linked networks. Proc Natl Acad Sci USA 101(1), 5249–5253Google Scholar
  45. [45].
    A. Jain, R. Dubes, Algorithms for Clustering Data (Prentice-Hall, Upper Saddle River, NJ, 1988)MATHGoogle Scholar
  46. [46].
    M. James, D.R, White, Structural cohesion and embeddedness: A hierarchical concept of social groups. Am. Socio. Rev. 68(1), 103–127 (2003)Google Scholar
  47. [47].
    M.B. Jdidia, C. Robardet, E. Fleury, Communities detection and analysis of their dynamics in collaborative networks, in Dynamic Communities: from Connectivity to Information Society Workshop Co-located with ICDIM’07 (IEEE, 2007), pp. 11–17. http://liris.cnrs.fr/publis/?id=3258
  48. [48].
    H. Jeong, S.P. Mason, A.L. Barabási, Z.N. Oltvai, Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)CrossRefGoogle Scholar
  49. [49].
    H. Jeong, Z. Néda, A.L. Barabási, Measuring preferential attachment in evolving networks. Europhys. Lett. 61(4), 567–572 (2003)CrossRefGoogle Scholar
  50. [50].
    E.M. Jin, M. Girvan, M.E. Newman, Structure of growing social networks. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 64(4 Pt 2), 046132 (2001)CrossRefGoogle Scholar
  51. [51].
    A.E. Krause, K.A. Frank, D.M. Mason, R.E. Ulanowicz, W.W. Taylor, Compartments revealed in food-web structure. Nature 426(6964), 282–285 (2003)CrossRefGoogle Scholar
  52. [52].
    R. Kumar, A. Tomkins, D. Chakrabarti, Evolutionary clustering, in Proc. of the 12th ACM SIGKDD Conference, 2006Google Scholar
  53. [53].
    H. Kwak, Y. Choi, Y.-H. Eom, H. Jeong, S. Moon, Mining communities in networks: a solution for consistency and its evaluation, in Proc. of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, pp. 301–314, 2009Google Scholar
  54. [54].
    A. Lancichinetti, S. Fortunato, Consensus clustering in complex networks. Sci. Rep. 2, 336 (2012)CrossRefGoogle Scholar
  55. [55].
    A. Lancichinetti, S. Fortunato, Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E80, 016118 (2009)Google Scholar
  56. [56].
    A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community detection algorithms. Phys. Rev. E78, 046110 (2008)Google Scholar
  57. [57].
    J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: densification laws, shrinking diameters and possible explanations, in Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining KDD’05, Chicago, IL (ACM, New York, 2005), pp. 177–187. ISBN 1-59593-135-X, doi.acm.org/10.1145/1081870.1081893
  58. [58].
    J. Leskovec, K.J. Lang, M. Mahoney, Empirical comparison of algorithms for network community detection, in Proceedings of the 19th International Conference on World Wide Web, WWW ’10 (ACM, New York, NY, 2010), pp. 631–640Google Scholar
  59. [59].
    R.D. Luce, A.D. Perry, A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)MathSciNetCrossRefGoogle Scholar
  60. [60].
    C.P. Massen, J.P.K. Doye, Thermodynamics of community structure. Arxiv preprint cond-mat/0610077 (2006)Google Scholar
  61. [61].
    F. McSherry, Spectral partitioning of random graphs, in Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, FOCS ’01 (IEEE Computer Society, Washington, DC, 2001), p. 529Google Scholar
  62. [62].
    J. Moody, D.A. McFarland, S. Bender-DeMoll, Dynamic network visualization: methods for meaning with longitudinal network movies. Am. J. Sociol. 110, 1206–1241 (2005)CrossRefGoogle Scholar
  63. [63].
    P. Mucha, T. Richardson, K. Macon, M.A. Porter, Community structure in time-dependent, multiscale, and multiplex networks. Science 876, 10–13 (2010)MathSciNetGoogle Scholar
  64. [64].
    M.E.J. Newman, Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004)CrossRefGoogle Scholar
  65. [65].
    M.E.J. Newman, Fast algorithm for detecting community structure in networks. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 69(6 Pt 2), 066133 (2004)CrossRefGoogle Scholar
  66. [66].
    M.E.J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  67. [67].
    M.E.J. Newman, A.L. Barabási, D.J. Watts (eds.), The Structure and Dynamics of Networks (Princeton University Press, Princeton, 2006)MATHGoogle Scholar
  68. [68].
    M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 26113 (2004)Google Scholar
  69. [69].
    H. Ning, W. Xu, Y. Chi, Y. Gong, T. Huang, Incremental spectral clustering with application to monitoring of evolving blog communities, in SIAM International Conference on Data Mining, 2007Google Scholar
  70. [70].
    G. Palla, A.-L. Barabasi, T. Vicsek, Quantifying social group evolution. Nature 446, 664–667 (2007)CrossRefGoogle Scholar
  71. [71].
    G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814 (2005)CrossRefGoogle Scholar
  72. [72].
    R. Pastor-Satorras, A. Vázquez, A. Vespignani, Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87(25), 258701 (2001)CrossRefGoogle Scholar
  73. [73].
    R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, New York, NY, 2004)CrossRefGoogle Scholar
  74. [74].
    P. Pons, M. Latapy, Computing communities in large networks using random walks. J. Graph Algorithm Appl. 10, 191–218 (2006)MathSciNetMATHCrossRefGoogle Scholar
  75. [75].
    F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101(9), 2658–2663 (2004)CrossRefGoogle Scholar
  76. [76].
    E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.L. Barabási, Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)CrossRefGoogle Scholar
  77. [77].
    J. Reichardt, S. Bornholdt, Statistical mechanics of community detection. Phys. Rev. E 74(1), 016110 (2006)MathSciNetCrossRefGoogle Scholar
  78. [78].
    M. Rosvall, C.T. Bergstrom, Mapping change in large networks. PLoS ONE 5(1), e8694 (2010). doi:10.1371/journal.pone.0008694CrossRefGoogle Scholar
  79. [79].
    M. Saerens, F. Fouss, L. Yen, P. Dupont, The principal components analysis of a graph, its relationships to spectral clustering, in Proceedings of the 15th European Conference on Machine Learning (ECML 2004). Lecture Notes in Artificial Intelligence (Springer, 2004), pp. 371–383Google Scholar
  80. [80].
    J. Scott, Social Network Analysis: A Handbook, 2nd edn. (SAGE Publications, 2000), 240 p.Google Scholar
  81. [81].
    M. Seifi, J.-L. Guillaume, I. Junier, J.-B. Rouquier, S. Iskrov, Stable community cores in complex networks, in Proceedings of the 3rd Workshop on Complex Networks (CompleNet 2012), 2012Google Scholar
  82. [82].
    J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (1997)Google Scholar
  83. [83].
    J. Sun, C. Faloutsos, S. Papadimitriou, P. Yu, Graphscope: parameter-free mining of large time-evolving graphs, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, NY, 2007), pp. 687–696Google Scholar
  84. [84].
    L. Tang, H. Liu, J. Zhang, Z. Nazeri, Community evolution in dynamic multi-mode networks, in International Conference on Knowledge Discovery and Data Mining, p. 8, 2008Google Scholar
  85. [85].
    C. Tantipathananandh, T. Berger-Wolf, Constant-factor approximation algorithms for identifying dynamic communities, in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09 (ACM, New York, NY, 2009), pp. 827–836Google Scholar
  86. [86].
    C. Tantipathananandh, T. Berger-Wolf, D. Kempe, A framework for community identification in dynamic social networks, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’07, p. 717, 2007Google Scholar
  87. [87].
    M. Toyoda, M. Kitsuregawa, Extracting evolution of web communities from a series of web archives, in Proceedings of the Fourteenth ACM Conference on Hypertext and Hypermedia (ACM, New York, NY, 2003), pp. 28–37Google Scholar
  88. [88].
    B.L. Tseng, Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. Soc. Network 685–694 (2008)Google Scholar
  89. [89].
    B.L. Tseng, Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, Analyzing communities and their evolutions in dynamic social networks. ACM Trans. Knowl. Discov. Data 3(2), 1–31 (2009)Google Scholar
  90. [90].
    U. von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  91. [91].
    Q. Wang, Détection de communautés recouvrantes dans des réseaux de terrain dynamiques. PhD thesis, Docteur de l’Ecole Normale Supérieure de Lyon, 2012Google Scholar
  92. [92].
    Y. Wang, B. Wu, N. Du, Community evolution of social network: feature, algorithm and model. Sci. Tech. (60402011) (2008). arXiv:0804.4356Google Scholar
  93. [93].
    S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences). Structural analysis in the social sciences, vol. 8, 1st edn. (Cambridge University Press, Cambridge, 1994)Google Scholar
  94. [94].
    S. White, P. Smyth, A spectral clustering approach to finding communities in graphs, in SDM, pp. 43–55, 2005Google Scholar
  95. [95].
    T. Yang, Y. Chi, S. Zhu, Y. Gong, R. Jin, A bayesian approach toward finding communities and their evolutions in dynamic social networks, in SIAM Conference on Data Mining (SDM), 2009Google Scholar
  96. [96].
    W.W. Za chary, An information flow model for conflict and fission in small groups. J. Anthropologica 1(33), 452–473 (1977)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Thomas Aynaud
    • 1
  • Eric Fleury
    • 2
  • Jean-Loup Guillaume
    • 1
  • Qinna Wang
    • 3
  1. 1.UPMC, CNRS (UMR 7606)ParisFrance
  2. 2.ENS de Lyon (UMR CNRS – ENS de Lyon – UCB Lyon 1 – Inria 5668)LyonFrance
  3. 3.Inria (UMR CNRS – ENS de Lyon – UCB Lyon 1 – Inria 5668)LyonFrance

Personalised recommendations