Skip to main content

An Empirical Validation of Growth Models for Complex Networks

  • Chapter
  • First Online:
Dynamics On and Of Complex Networks, Volume 2

Abstract

This chapter is focused towards the empirical validation of generation of powerlaw networks. Empirical growth data from four different networks (the Flickr and the YouTube online social networks, Wikipedia’s content graph, and the Internet’s AS-level graph) are used to show this growth. This study makes two contributions: First, the gathering of detailed measurements of the growth of four large-scale networks and make the data available to the research community. Second, the thorough investigation of the link creation processes in datasets. The inadequacy of preferential attachment (i.e., “the rich get richer”), a popular growth model, to explain growth has been revealed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For directed networks, we only count directed paths.

References

  1. http://as-rank.caida.org/data/

  2. L.A. Adamic, O. Buyukkokten, E. Adar, A social network caught in the Web. First Monday 8(6) (2003)

    Google Scholar 

  3. R. Albert, H. Jeong, A.-L. Bárabási, The diameter of the World Wide Web. Nature 401, 130 (1999)

    Article  Google Scholar 

  4. L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan, Group formation in large social networks: membership, growth, evolution, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06), Philadelphia, PA, 2006

    Google Scholar 

  5. A.-L. Bárabási, R. Albert, Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. V. Braitenberg, A. Schz, Anatomy of a Cortex: Statistics and Geometry (Springer, Berlin, 1991)

    Google Scholar 

  7. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Graph structure in the web: experiments and models, in Proceedings of the 9th International World Wide Web Conference (WWW’00), Amsterdam, 2000

    Google Scholar 

  8. A. Capocci, V.D.P. Servedio, F. Colaiori, L.S. Buriol, D. Donato, S. Leonardi, G. Caldarelli, Preferential attachment in the growth of social networks: the internet encyclopedia Wikipedia. Phys. Rev. E, American Physical Society, College Park, MD 74, 036116-1–0361166 (2006)

    Google Scholar 

  9. H. Chang, S. Jamin, W. Willinger, To peer or not to peer: modeling the evolution of the internet’s AS-level topology, in Proceedings of the 25th Conference on Computer Communications (INFOCOM’06), Barcelona, Spain, 2006

    Google Scholar 

  10. N. Eiron, K.S. McCurley, Link structure of hierarchical information networks, in Proceedings of the Third Workshop on Algorithms and Models for the Web-Graph (WAW’04), Rome, Italy, 2004

    Google Scholar 

  11. M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the Internet topology, in Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM’99), Cambridge, MA, 1999

    Google Scholar 

  12. D. Garlaschelli, M. Loffredo, Patterns of link reciprocity in directed networks. Phys. Rev. Lett., American Physical Society, College Park, MD 93, 268701-1–268701-4 (2004)

    Google Scholar 

  13. P. Holme, B.J. Kim, Growing scale-free networks with tunable clustering. Phys. Rev. E, American Physical Society, College Park, MD 65, 026107-1–026107-4 (2002)

    Google Scholar 

  14. E.M. Jin, M. Grivan, M. Newman, The structure of growing social networks. Phys. Rev. E, American Physical Society, College Park, MD 64, 046132-1–046132-8 (2001)

    Google Scholar 

  15. J. Kleinberg, Authoritative sources in a hyperlinked environment, in Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA’98), San Francisco, CA, 1998

    Google Scholar 

  16. K. Klemm, V.M. Eguiluz, Highly clustered scale-free networks. Phys. Rev. E, American Physical Society, College Park, MD 65, 036123-1–036123-5 (2002)

    Google Scholar 

  17. G. Kossinets, D.J. Watts, Empirical analysis of an evolving social network. Science 311, 88–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Kumar, J. Novak, P. Raghavan, A. Tomkins, On the bursty evolution of blogspace, in Proceedings of the 12th International Conference on World Wide Web (WWW’03), Budapest, Hungary, 2003

    Google Scholar 

  19. R. Kumar, J. Novak, A. Tomkins, Structure and evolution of online social networks, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06), Philadelphia, PA, 2006

    Google Scholar 

  20. R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, Trawling the web for emerging cyber-communities. Comput. Network 31, 1481–1493 (1999)

    Article  Google Scholar 

  21. J. Leskovec, J. Kleinberg, C. Faloutsos, Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data, Association for Computing Machinery, New York, NY 1, 1–41 (2007)

    Google Scholar 

  22. D. Liben-Nowell, J. Kleinberg, The link prediction problem for social networks, in Proceedings of the 2003 ACM International Conference on Information and Knowledge Management (CIKM’03), New Orleans, LA, 2003

    Google Scholar 

  23. A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, B. Bhattacharjee, Measurement and analysis of online social networks, in Proceedings of the 5th ACM/USENIX Internet Measurement Conference (IMC’07), San Diego, CA, 2007

    Google Scholar 

  24. M. Mitzenmacher, A brief history of generative models for power law and lognormal distributions. Internet Math. 1(2), 226–251 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Mitzenmacher, Editorial: the future of power law research. Internet Math. 2(4), 525–534 (2006)

    Article  Google Scholar 

  26. M.E.J. Newman, Clustering and preferential attachment in growing networks. Phys. Rev. E, American Physical Society, College Park, MD 64, 025102-1–025102-4 (2001)

    Google Scholar 

  27. M.E.J. Newman, The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking: bringing order to the web. Technical Report, Stanford University, 1998

    Google Scholar 

  29. M. Peltomäki, M. Alava, Correlations in bipartite collaboration networks. J. Stat. Mech., IOP Publishing, Bristol, UK P01010, 1–23 (2006)

    Google Scholar 

  30. A.G. Phadke, J.S. Thorp, Computer Relaying for Power Systems (Wiley, New York, NY, 1988)

    Google Scholar 

  31. J. Saramaki, K. Kaski, Scale-free networks generated by random walkers. Phys. A 341, 80 (2004)

    Article  MathSciNet  Google Scholar 

  32. A. Vásquez, Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E, American Physical Society, College Park, MD 67, 056104-1–056104-15 (2003)

    Google Scholar 

  33. V. Zlatić, M. Božičević, H. Štefančić, M. Domazet, Wikipedias: collaborative web-based encyclopedias as complex networks. Phys. Rev. E, American Physical Society, College Park, MD 74, 016115-1–016115-9 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Mislove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mislove, A., Koppula, H.S., Gummadi, K.P., Druschel, P., Bhattacharjee, B. (2013). An Empirical Validation of Growth Models for Complex Networks. In: Mukherjee, A., Choudhury, M., Peruani, F., Ganguly, N., Mitra, B. (eds) Dynamics On and Of Complex Networks, Volume 2. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-6729-8_2

Download citation

Publish with us

Policies and ethics