Skip to main content

Epidemics on a Stochastic Model of Temporal Network

  • Chapter
  • First Online:
Dynamics On and Of Complex Networks, Volume 2

Abstract

This chapter presents a simple and intuitive stochastic model of a temporal network and investigate how a simulated infection co-evolves with the temporal structures, focusing on the growth dynamics of the epidemics. The model assumes no underlying topological structure and is only constrained by the time between two consecutive events of vertex activation, hereafter called vertex inter-event time. The network model consists of random activations of a vertex according to a pre-defined vertex inter-event time distribution. The vertices active at a given time are randomly connected in pairs during one time unit. The link is then destroyed and the vertices set to the inactive state. The infection event occurs through this link if one of the vertices is in an infective state. This model has been studied by using a susceptible infective dynamics with one (SI) and two (SII) infective stages. The first dynamics is motivated for being an upper limit case, where once infected, the vertex continues infecting at every contact. The second dynamics is more realistic and corresponds to a model of HIV spreading including an acute (high infectivity) and chronic (low infectivity) stages of infection with different periods. If the second stage is set to zero in the SII model, we recover the susceptible infected recovered (SIR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The geometric is a discrete time equivalent to the exponential distribution.

References

  1. L.J.S. Allen, Some discrete-time SI, SIR and SIS epidemic models. Math. Biosci. 124, 83–105 (1994)

    Article  MATH  Google Scholar 

  2. A.-L. Barabási, The origin of bursts and heavy tails in human dynamics. Nature 435, 207–210 (2005)

    Article  Google Scholar 

  3. P. Bajardi, A. Barrat, F. Natale, L. Savini, et al., Dynamical patterns of cattle trade movements. PLoS ONE 6, 5 e19869 (2011)

    Google Scholar 

  4. A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  5. S. Bansal, J. Read, B. Pourbohloul, L.A. Meyers, The dynamic nature of contact networks in infectious disease epidemiology. J. Biol. Dyn. 4, 5 478–489 (2010)

    Google Scholar 

  6. A. Clauset, C.R. Shalizi, M.E.J. Newman, Power law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. T.D. Hollingsworth, R.M. Anderson, C. Fraser, HIV-1 transmission, by stage of infection. JID 198, 687–693 (2008)

    Article  Google Scholar 

  9. P. Holme, J. Saramäki, Temporal networks. To appear in Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  10. J.L. Iribarren, E. Moro, Impact of human activity patterns on the dynamics of information diffusion. PRL 103, 038702 (2009)

    Article  Google Scholar 

  11. J.S. Koopman, J.A. Jacquez, G.W. Welch, et al., The role of early HIV infection in the spread of HIV through populations. JAIDS 14(3), 249–258 (1997)

    Google Scholar 

  12. M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, et al., Small but slow world: How network topology and burstiness slow down spreading. PRE 83, 025102 (2011)

    Article  Google Scholar 

  13. R.D. Malmgren, D.B. Stouffer, A.E. Motter, L.A.N. Amaral, A poissonian explanation for heavy tails in e-mail communication. PNAS 105(47), 18153–18158 (2008)

    Article  Google Scholar 

  14. M. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)

    MATH  Google Scholar 

  15. R.K. Pan, J. Saramäki, Path lengths, correlations, and centrality in temporal networks. PRE 84, 016105 (2011)

    Article  Google Scholar 

  16. L.E.C. Rocha, V.D. Blondel, Bursts of vertex activation and epidemics in evolving networks. To appear in PLoS Comput. Bio. arXiv:1206.6036 (2013)

    Google Scholar 

  17. J.M. Read, K.T.D. Eames, W.J. Edmunds, Dynamic social networks and the implications for the spread of infectious disease. J. R. Soc. Interface 5, 26 1001–1007 (2008)

    Google Scholar 

  18. L.E.C. Rocha, F. Liljeros, P. Holme, Information dynamics shape the sexual networks of internet-mediated prostitution. PNAS 107(13), 5706–5711 (2010)

    Article  MATH  Google Scholar 

  19. L.E.C. Rocha, F. Liljeros, P. Holme, Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 7(3), e1001109 (2011)

    Google Scholar 

  20. M. Salathé, M. Kazandjieva, J.W. Leeb, et al., A high-resolution human contact network for infectious disease transmission. PNAS 107(51), 22020–22025 (2010)

    Article  Google Scholar 

  21. J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, et al., Simulation of a SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med. 9(87), 1–15 (2011)

    Google Scholar 

  22. J. Tang, S. Scellato, M. Musolesi, et al., Small-world behavior in time-varying graphs. PRE 81, 055101(R) (2010)

    Google Scholar 

  23. A. Vazquez, B. Rácz, A. Lukács, A.-L. Barabási, Impact of non-Poisson activity patterns on spreading processes. PRL 98, 158702 (2007)

    Article  Google Scholar 

  24. M. Vernon, M.J. Keeling, Representing the UK cattle herd as static and dynamic networks. Proc. R. Soc. Lond. B Bio. 276, 469–476 (2009)

    Article  Google Scholar 

  25. E. Volz, L.A. Meyers, Susceptible-infected-recovered epidemics in dynamic contact networks. Proc. R. Soc. B 274 2925–2933 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

LECR is beneficiary of a FSR incoming postdoctoral fellowship of the Académie universitaire Louvain, co-funded by the Marie Curie Actions of the European Commission. AD is a research fellow with the Fonds National de la Recherche Scientifique (FRS-FNRS). Computational resources have been provided by the supercomputing facilities of the Université catholique de Louvain (CISM/UCL) and the Consortium des Équipements de Calcul Intensif en Fédération Wallonie Bruxelles (CECI) funded by FRS-FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis E. C. Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rocha, L.E.C., Decuyper, A., Blondel, V.D. (2013). Epidemics on a Stochastic Model of Temporal Network. In: Mukherjee, A., Choudhury, M., Peruani, F., Ganguly, N., Mitra, B. (eds) Dynamics On and Of Complex Networks, Volume 2. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-6729-8_15

Download citation

Publish with us

Policies and ethics