The Mechanics of Soft Cohesive Sediments During Early Diagenesis

  • Bernard P. Boudreau
  • Mark Barry
  • Christopher L’Esperance
  • Christopher K. Algar
  • Bruce D. Johnson
Part of the SERDP ESTCP Environmental Remediation Technology book series (SERDP/ESTCP, volume 6)


Natural, surficial, cohesive (clay-bearing), aquatic sediments are subject to a variety of phenomena in which physics, rather than say chemistry, plays an essential role; this includes, but is not limited to, bioturbation, self-weight compaction, and phase growth. Scientific monographs (e.g., Berner, 1971, 1980; Boudreau, 1997; DiToro, 2001; Burdige, 2006; Schultz and Zabel, 2006) that focus on early diagenesis, i.e., those changes occurring in the top 1–10 meters (m) of aqueous sediments, make only passing reference to the physics of early diagenetic phenomena. In contrast, civil engineers, soil physicists and geophysicists have afforded great attention to the physics/mechanics of compaction, particularly in soils, anthropogenic sediments and basin-scale studies (e.g., Yong and Warkentin, 1966; Giles, 1997; Wang, 2000; Craig, 2004; Mitchell and Soga, 2005; Das, 2008); yet, this knowledge has not been effectively transferred to obtain a better understanding of early diagenesis.


Shear Strength Overlie Water Linear Elastic Fracture Mechanic Early Diagenesis Muddy Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank our partners-in-crime over the years, Bruce Gardiner (The University of Western Australia), Peter Jumars (The University of Maine), Kelly Dorgan (Scripps Institution of Oceanography, California), Yoko Furukawa (Naval Research Laboratory [NRL]), and Allan Reed (NRL) for sharing their inspiration and understanding. This work was supported by Natural Sciences and Engineering Research Council of Canada and U.S. Office of Naval Research. We also thank our reviewers for their considered comments. While we might not always have made the desired changes, we appreciate the opportunity to think about these issues.


  1. Algar CK. 2009. Bubble Growth and Rise in Soft Fine-Grained Sediments. PhD Dissertation, Dalhousie University, Canada. 137 p.Google Scholar
  2. Algar CK, Boudreau BP. 2009. Transient growth of an isolated bubble in muddy, fine-grained sediments. Geochim Cosmochim Acta 73:2581–2591.CrossRefGoogle Scholar
  3. Algar CK, Boudreau BP. 2010. The stability of bubbles in a linear elastic medium: Implications for bubble growth in marine sediments. J Geophys Res - Earth Surface 115, F03012, doi: 10.1029/2009JF001312, 2010.CrossRefGoogle Scholar
  4. Algar CK, Boudreau BP, Barry MA. 2011. Initial rise of bubbles in cohesive sediments by a process of viscoelastic fracture. J Geophys Res – Solid Earth 116, B04207, doi: 10.1029/2010JB008133.CrossRefGoogle Scholar
  5. Aller RC. 1980. Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochim Cosmochim Acta 44:1955–1965.CrossRefGoogle Scholar
  6. Aller RC. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In McCall PL, Tevesz MJS, eds, Animal-Sediment Interactions. Plenum Publishing Corporation, New York, NY, USA, pp 53–102.CrossRefGoogle Scholar
  7. Aluko OB, Chandler HW. 2006. A fracture strength parameter for brittle agricultural soils. Biosyst Eng 93:245–252.CrossRefGoogle Scholar
  8. Barry MA. 2010. Elastic and Fracture Behaviour of Marine Sediment in Response to Free Gas. PhD Dissertation, Dalhousie University, Canada. 177 p.Google Scholar
  9. Barry MA, Boudreau BP, Johnson BD, Reed AH. 2010. Validation of bubble growth by LEFM in sediments and other soft elastic solids. J Geophys Res – Earth Surface 115, F04029, doi: 10.1029/2010JF001833.CrossRefGoogle Scholar
  10. Barry MA, Johnson BD, Boudreau BP. 2012. A new instrument for high-resolution in situ assessment of Young’s modulus in shallow cohesive sediments. Geo-Mar Lett doi:  10.1007/s00367-012-0277-z.
  11. Been K, Sill GC. 1981. Self-weight consolidation of soft soils: An experimental and theoretical study. Géotechnique 31:519–535.CrossRefGoogle Scholar
  12. Bennett RH, Bryant WR, Hulbert MH, eds. 1991. Microstructure of Fine-Grained Sediments – from Shale to Mud. Springer-Verlag, New York, NY, USA. 582 p.Google Scholar
  13. Bennett RH, Hulbert MH, Meyer MM, Lavoie DM, Briggs KB, Lavoie DL, Baerwald RJ, Chiou WA. 1996. Fundamental response of pore-water pressure to microfabric and permeability characteristics: Eckernförde Bay. Geo-Mar Lett 16:182–188.CrossRefGoogle Scholar
  14. Bennett RH, Kastner M, Baerwald RJ, Ransom B, Sawyer W, Lambert MW, Olsen H, Hulbert MH. 1999. Early diagenesis: Impact of organic matter on mass physical properties and processes, California continental margin. Mar Geol 159:7–34.CrossRefGoogle Scholar
  15. Berner RA. 1971. Principles of Chemical Sedimentology. McGraw-Hill, New York, NY, USA. 240 p.Google Scholar
  16. Berner RA. 1980. Early Diagenesis: A Theoretical Approach. Princeton University Press, Princeton, NJ, USA. 241 p.Google Scholar
  17. Best AI, Richardson MD, Boudreau BP, Judd AG, Leifer I, Lyons AP, Martens CS, Orange DL, Wheeler SJ. 2006. Shallow seabed methane gas could pose coastal hazard. EOS: Trans Amer Geophys Union 87:213–217.CrossRefGoogle Scholar
  18. Biot MA. 1941. General theory of three-dimensional consolidation. J Appl Phys 12:155–164.CrossRefGoogle Scholar
  19. Biot MA. 1956. General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 23:91–96.Google Scholar
  20. Biot MA. 1973. Nonlinear and semilinear rheology of porous solids. J Geophys Res 78: 4924–4937.CrossRefGoogle Scholar
  21. Bird RB, Stewart WE, Lightfoot EN. 2007. Transport Phenomena, 2nd ed. John Wiley & Sons, New York, NY, USA. 920 p.Google Scholar
  22. Boudreau BP. 1996. The diffusive tortuosity of fine-grained unlithified sediments. Geochimim Cosmochim Acta 60:139–3142.Google Scholar
  23. Boudreau BP. 1997. Diagenetic Models and their Implementation. Springer-Verlag, Berlin, Germany. 414 p.CrossRefGoogle Scholar
  24. Boudreau BP, Algar C, Johnson BD, Croudace I, Reed A, Furukawa Y, Dorgan KM, Jumars PA, Grader AS, Gardiner BS. 2005. Bubble growth and rise in soft sediments. Geol 33:517–520.CrossRefGoogle Scholar
  25. Boudreau BP, Bennett RH. 1999. New rheological and porosity equations for steady-state compaction. Am J Sci 299:517–528.CrossRefGoogle Scholar
  26. Boudreau BP, Meysman FJR. 2006. Predicted tortuosity of muds. Geol 34:693–696.CrossRefGoogle Scholar
  27. Breitzke M. 2006. Physical properties of marine sediments. In Schultz HD, Zabel M, eds, Marine Geochemistry, 2nd ed. Springer, Berlin, Germany, pp 27–71.CrossRefGoogle Scholar
  28. Broek D. 1982. Elementary Engineering Fracture Mechanics. Narinus Nijhoff, Boston, MA, USA. 469 p.CrossRefGoogle Scholar
  29. Burdige DJ. 2006. Geochemistry of Marine Sediments. Princeton University Press, Princeton, NJ, USA. 609 p.Google Scholar
  30. Clayton CRI, Heymann G. 2001. Stiffness of geomaterials at very small strains. Geotech 51:245–255.CrossRefGoogle Scholar
  31. Craig RF. 2004. Craig’s Soil Mechanics. Taylor and Francis, London, United Kingdom. 464 p.Google Scholar
  32. Das BM. 2008. Advanced Soil Mechanics. Taylor and Francis, London, United Kingdom. 600 p.Google Scholar
  33. Davis AM, Schultheiss PJ. 1980. Seismic signal processing in engineering-site investigation – a case history. Ground Eng 13:44–48.Google Scholar
  34. Davis RO, Selvadurai APS. 1996. Elasticity and Geomechanics. Cambridge University Press, Cambridge, United Kingdom. 256 p.Google Scholar
  35. Davis RO, Selvadurai APS. 2002. Plasticity and Geomechanics. Cambridge Univ. Press, Cambridge, United Kingdom. 304 p.CrossRefGoogle Scholar
  36. de Boer R. 1992. Development of porous media theories - A brief historical review. Transp Porous Media 9:155–164.CrossRefGoogle Scholar
  37. DiToro DM. 2001. Sediment Flux Modeling. Wiley-Interscience, New York, NY, USA. 624 p.Google Scholar
  38. Dorgan KM, Jumars PA, Johnson BD, Boudreau BP, Landis E. 2005. Burrow elongation by crack propagation. Nat 433:475.CrossRefGoogle Scholar
  39. Engelhardt WV, Gaida KH. 1963. Concentration changes of pore solutions during the compaction of clay sediments. J Sed Pet 33:919–930.CrossRefGoogle Scholar
  40. Gardiner BS, Boudreau BP, Johnson BD. 2003. Growth of disk-shaped bubbles in sediments. Geochim Cosmochim Acta 67:1485–1494.CrossRefGoogle Scholar
  41. Gasparre A, Nishimura S, Minh NA, Coop MR, Jardine RJ. 2007. The stiffness of natural London clay. Géotech 57:33–47.CrossRefGoogle Scholar
  42. Gibson RE. 1958. The progress of consolidation in a clay layer increasing in thickness with time. Géotechnique 8:171–182.CrossRefGoogle Scholar
  43. Gibson RE, Schiffman RL, Whitman RV. 1989. On two definitions of excess pore pressure. Géotechnique 39:169–171.CrossRefGoogle Scholar
  44. Giles MR. 1997. Diagenesis: A Quantitative Perspective. Kluwer Academic Publisher, Dordrecht, The Netherlands. 526 p.Google Scholar
  45. Gross D, Seelig T. 2006. Fracture Mechanics. Springer-Verlag, Berlin, Germany. 319 p.Google Scholar
  46. Haeckel M, Boudreau BP, Wallmann K. 2007. Bubble-induced porewater irrigation: A 3-D model for porewater mixing. Geochim Cosmochim Acta 71:5135–5154.CrossRefGoogle Scholar
  47. Hall TJ, Bilgen M, Insana MF, Krouskop TA. 1997. Phanton materials for elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 44:1355–1365.CrossRefGoogle Scholar
  48. Hamilton EL. 1971. Elastic properties of marine sediments. J Geophys Res 76:579–604.CrossRefGoogle Scholar
  49. Hamilton EL. 1979. vp/vs and poisson’s ratios in marine sediments and rocks. J Acoust Soc Am 66:1093–1101.CrossRefGoogle Scholar
  50. Hamilton EL, Bucker HP, Keir DL, Whitney JA. 1970. Velocities of compressional and shear waves in marine sediments determined from a research submersible. J Geophys Res 75:4039–4049.Google Scholar
  51. Hsiao SV, Shemdin OH. 1980. Interaction of ocean waves with a soft bottom. J Phys Oceanogr 10:605–611.CrossRefGoogle Scholar
  52. Hunter RJ. 2001. Foundations of Colloid Science, 2nd ed. Oxford University Press, Oxford, United Kingdom. 806 p.Google Scholar
  53. Jaeger JC. 1969. Elasticity, Fracture and Flow, with Engineering and Geological Applications. Chapman and Hall, London, United Kingdom. 268 p.Google Scholar
  54. Jiang F, Mehta A. 1995. Mudbanks of the southwest coast of India IV: Mud viscoelastic properties. J Coastal Res 11:918–926.Google Scholar
  55. Johnson BD, Boudreau BP, Gardiner BS, Maass R. 2002. Mechanical response of sediments to bubble growth. Mar Geol 187:247–363.CrossRefGoogle Scholar
  56. Johnson BD, Barry M, Boudreau BP, Jumars PA, Dorgan KM. 2012. Profiling fracture toughness in cohesive sediments. Geo-Mar Lett 32:39–48, doi:  10.1007/s00367-011-0243-1 CrossRefGoogle Scholar
  57. Klein S. 2006. Sediment porewater exchange and solute release during ebullition. Mar Chem 102:60–71.CrossRefGoogle Scholar
  58. Koppula SD, Morgenstern NR. 1982. On the consolidation of sedimenting clays. Can Geotech J 19:260–268.CrossRefGoogle Scholar
  59. Lavoie D, Griffin SR, Grosz FB. 1996. DIAS - A novel technique for measuring in situ shear modulus. Geo-Marine Lett 16:254–260.CrossRefGoogle Scholar
  60. Lee K, Sills GC. 1981. The consolidation of a soil stratum, including self-weight effects and large strains. Int J Num Anal Meth Geomech 5:405–428.CrossRefGoogle Scholar
  61. L’Esperance JC. 2009. Simultaneous measurement of Young’s modulus and Poisson’s ratio of marine sediments with a simple uni-axial compression test. MSc Thesis, Dalhousie University, Canada. 218 p.Google Scholar
  62. Long RR. 1961. Mechanics of Solids and Fluids. Prentice-Hall, Engelwood Cliffs, NJ, USA. 156 p.Google Scholar
  63. Maa P-Y. 1986. Erosion of Soft Mud by Waves. PhD Dissertation, University of Florida, Gainesville, FL, USA. 286 p.Google Scholar
  64. Maa P-Y, Mehta AJ. 1988. Soft mud properties: Voigt model. J Waterw Port Coast Ocean Eng 114:634–650.CrossRefGoogle Scholar
  65. Markidou A, Shih WY, Shih W-H. 2005. Soft-materials elastic and shear moduli measurement using piezoelectric cantilevers. Rev Sci Instrum 76:064302; doi: 10.1063/1.1928407.CrossRefGoogle Scholar
  66. Martens CS, Albert DB. 1995. Biogeochemical processes controlling concentrations and transport of biogenic methane in organic rich coastal sediments. In Wever TF, ed, Proceedings of the Workshop on Modeling Methane-Rich Sediments of Eckernforde Bay, Eckernforde, June 26–30, Forschungs Bundeswehr Wasserschall Geophysik, pp 10–17.Google Scholar
  67. Martens C, Klump J. 1980. Biogeochemical cycling in an organic-rich coastal marine basin-1. Methane sediment-water exchange processes. Geochim Cosmochim Acta 44:471–490.CrossRefGoogle Scholar
  68. McNabb A. 1960. A mathematical treatment of one-dimensional consolidation. Q Appl Math 17:337–347.Google Scholar
  69. Mehta AJ, Partheniades E. 1982. Resuspension of deposited cohesive sediment beds. Proceedings 18th Coastal Engineering Conference, v. 2, Cape Town, South Africa, pp 1569–1588.Google Scholar
  70. Menand T, Tait S. 2002. The propagation of a buoyant liquid-filled fissure from a source under constant pressure: an experimental approach. J Geophys Res 107:2306; doi: 10.1029/2001JB000589.CrossRefGoogle Scholar
  71. Mitchell JK, Soga K. 2005. Fundamentals of Soil Behaviour, 3rd ed. Wiley, New York, NY, USA. 577p.Google Scholar
  72. Partheniades E. 1991. Effect of bed shear stresses on the deposition and strength of deposited cohesive muds. In Bennett RH, Bryant WR, Hulbert MH, eds, Microstructure of Fine-grained Sediments: From Mud to Shale. Springer Verlag, Berlin, Germany, pp 175–183.CrossRefGoogle Scholar
  73. Pickering DJ. 1970. Anisotropic elastic parameters for soil. Géotechnique 20:271–276.Google Scholar
  74. Raju LV, Ramana YV. 1986. Physical and elastic properties of marine sediments off Bombay. Indian Mar Geotechnol 6:359–375.CrossRefGoogle Scholar
  75. Rieke HH, Chilingarian GV. 1974. Compaction of Argillaceous Sediments. Elsevier, Amsterdam, The Netherlands. 424 p.Google Scholar
  76. Rivalta E, Dahm T. 2006. Acceleration of buoyancy-driven fractures and magmatic dikes beneath the free surface. Geophys J Int 166:1424–1439.CrossRefGoogle Scholar
  77. Salem HS. 2000. Poisson’s ratio and the porosity of surface soils and shallow sediments, determined from seismic compressional and shear wave velocities. Géotech 50:461–463.CrossRefGoogle Scholar
  78. Sato H, Katano M, Takigawa T, Masuda T. 2001. Estimation for the elasticity of vascular endothelial cells on the basis of atomic force microscopy and Young’s modulus of gelatin gels. Polymer Bull 47:375–381.CrossRefGoogle Scholar
  79. Schulz HD, Zabel M. 2006. Marine Chemistry, 2nd ed. Springer, Berlin, Germany. 574 p.Google Scholar
  80. Shames IH. 1964. Mechanics of Deformable Solids. Prentice-Hall, Engelwood Cliffs, NJ, USA. 532 p.Google Scholar
  81. Small JC, Booker JR, Davis EH. 1976. Elasto-plastic consolidation of soil. Int J Solids Struct 12:431–448.CrossRefGoogle Scholar
  82. Takada A. 1990. Experimental study on propagation of liquid-filled crack in gelatin: Shape and velocity in hydrostatic stress condition. J Geophys Res 95:8471–8481.CrossRefGoogle Scholar
  83. Terzaghi K. 1943. Theory of Soil Mechanics. John Wiley and Sons, New York, NY, USA. 510 p.CrossRefGoogle Scholar
  84. Thibodeaux LJ, Valsaraj KT, Reible DD. 2001. Bioturbation-driven transport of hydrophobic organic contaminants from bed sediment. Environ Eng Sci 18:215–233.CrossRefGoogle Scholar
  85. Timoshenko SP, Goodier JN. 1934. Theory of Elasticity (1970 printing). McGraw-Hill, New York, NY, USA. 567 p.Google Scholar
  86. Toorman EA. 1996. Sedimentation and self-weight consolidation: general unifying theory. Géotechnique 46:103–113.CrossRefGoogle Scholar
  87. Verreet G, Berlamont J. 1988. Rheology and non-Newtonian behavior of sea and estuarine mud. In Cheremisinoff NP, ed, Encyclopedia of Fluid Mechanics. Gulf Publishing Company, Houston, TX, USA, pp135–149.Google Scholar
  88. Wang HF. 2000. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology. Princeton University Press, Princeton, NJ, USA. 287 p.Google Scholar
  89. Weertman J. 1971a. Theory of water-filled crevasses in glaciers applied to vertical magma transport beneath oceanic ridges. J Geophy Res 76:1171–1183.CrossRefGoogle Scholar
  90. Weertman J. 1971b. Velocity at which liquid-filled cracks move in the Earth’s crust or in glaciers. J Geophys Res 76:8544–8553.CrossRefGoogle Scholar
  91. Williams PR, Williams DJA. 1989. Rheometry for concentrated cohesive suspensions. J Coastal Res 5:151–164.Google Scholar
  92. Winterwerp JC, van Kesteren WGM. 2004. Introduction to the Physics of Cohesive Sediment in the Marine Environment, Developments in Sedimentology 56. Elsevier, Amsterdam, The Netherlands. 466 p.Google Scholar
  93. Yong RN, Warkentin BP. 1966. Introduction to Soil Behavior. Macmillan, London, UK. 451 p.Google Scholar
  94. Yuan Q, Valsaraj KT, Reible DD, Willson CS. 2007. A laboratory study of sediment and contaminant release during gas ebullition. J Air Waste Manag Assoc 57:1103–1111.CrossRefGoogle Scholar
  95. Znidarcic D, Schiffman RL. 1982. On Terzaghi’s concept of consolidation. Géotechnique 32: 387–389.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Bernard P. Boudreau
    • 1
  • Mark Barry
    • 1
  • Christopher L’Esperance
    • 2
  • Christopher K. Algar
    • 3
  • Bruce D. Johnson
    • 4
  1. 1.Dalhousie UniversityHalifaxCanada
  2. 2.Satlantic LPHalifaxCanada
  3. 3.Marine Biology LaboratoryFalmouthUSA
  4. 4.Pro-Oceanus SystemsBridgewaterCanada

Personalised recommendations