Skip to main content

The Mechanics of Soft Cohesive Sediments During Early Diagenesis

  • Chapter
  • First Online:
Processes, Assessment and Remediation of Contaminated Sediments

Abstract

Natural, surficial, cohesive (clay-bearing), aquatic sediments are subject to a variety of phenomena in which physics, rather than say chemistry, plays an essential role; this includes, but is not limited to, bioturbation, self-weight compaction, and phase growth. Scientific monographs (e.g., Berner, 1971, 1980; Boudreau, 1997; DiToro, 2001; Burdige, 2006; Schultz and Zabel, 2006) that focus on early diagenesis, i.e., those changes occurring in the top 1–10 meters (m) of aqueous sediments, make only passing reference to the physics of early diagenetic phenomena. In contrast, civil engineers, soil physicists and geophysicists have afforded great attention to the physics/mechanics of compaction, particularly in soils, anthropogenic sediments and basin-scale studies (e.g., Yong and Warkentin, 1966; Giles, 1997; Wang, 2000; Craig, 2004; Mitchell and Soga, 2005; Das, 2008); yet, this knowledge has not been effectively transferred to obtain a better understanding of early diagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use “cohesive” in the physics sense of “the sticking together of particles,” without the geological restriction that these sediments be muds. Thus, we have found that clay-bearing sands are often cohesive, and are treated that way.

  2. 2.

    Many papers in the literature plot strain, ε, or strain rate (velocity), \( \dot{\varepsilon} \), on the x-axis, probably for historic reasons, i.e., you could see the strains or strain rates, but stresses were hard to measure. Figure 4.1 plots the stress, σ, on the x-axis to be consistent with the scientific tradition of placing the independent variable (cause) on the abscissa. There will be an advantage to this when we consider compaction.

  3. 3.

    Old North American proverb, indicating very slow to the eye.

REFERENCES

  • Algar CK. 2009. Bubble Growth and Rise in Soft Fine-Grained Sediments. PhD Dissertation, Dalhousie University, Canada. 137 p.

    Google Scholar 

  • Algar CK, Boudreau BP. 2009. Transient growth of an isolated bubble in muddy, fine-grained sediments. Geochim Cosmochim Acta 73:2581–2591.

    Article  CAS  Google Scholar 

  • Algar CK, Boudreau BP. 2010. The stability of bubbles in a linear elastic medium: Implications for bubble growth in marine sediments. J Geophys Res - Earth Surface 115, F03012, doi:10.1029/2009JF001312, 2010.

    Article  Google Scholar 

  • Algar CK, Boudreau BP, Barry MA. 2011. Initial rise of bubbles in cohesive sediments by a process of viscoelastic fracture. J Geophys Res – Solid Earth 116, B04207, doi:10.1029/2010JB008133.

    Article  Google Scholar 

  • Aller RC. 1980. Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochim Cosmochim Acta 44:1955–1965.

    Article  CAS  Google Scholar 

  • Aller RC. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In McCall PL, Tevesz MJS, eds, Animal-Sediment Interactions. Plenum Publishing Corporation, New York, NY, USA, pp 53–102.

    Chapter  Google Scholar 

  • Aluko OB, Chandler HW. 2006. A fracture strength parameter for brittle agricultural soils. Biosyst Eng 93:245–252.

    Article  Google Scholar 

  • Barry MA. 2010. Elastic and Fracture Behaviour of Marine Sediment in Response to Free Gas. PhD Dissertation, Dalhousie University, Canada. 177 p.

    Google Scholar 

  • Barry MA, Boudreau BP, Johnson BD, Reed AH. 2010. Validation of bubble growth by LEFM in sediments and other soft elastic solids. J Geophys Res – Earth Surface 115, F04029, doi:10.1029/2010JF001833.

    Article  Google Scholar 

  • Barry MA, Johnson BD, Boudreau BP. 2012. A new instrument for high-resolution in situ assessment of Young’s modulus in shallow cohesive sediments. Geo-Mar Lett doi: 10.1007/s00367-012-0277-z.

  • Been K, Sill GC. 1981. Self-weight consolidation of soft soils: An experimental and theoretical study. Géotechnique 31:519–535.

    Article  Google Scholar 

  • Bennett RH, Bryant WR, Hulbert MH, eds. 1991. Microstructure of Fine-Grained Sediments – from Shale to Mud. Springer-Verlag, New York, NY, USA. 582 p.

    Google Scholar 

  • Bennett RH, Hulbert MH, Meyer MM, Lavoie DM, Briggs KB, Lavoie DL, Baerwald RJ, Chiou WA. 1996. Fundamental response of pore-water pressure to microfabric and permeability characteristics: Eckernförde Bay. Geo-Mar Lett 16:182–188.

    Article  CAS  Google Scholar 

  • Bennett RH, Kastner M, Baerwald RJ, Ransom B, Sawyer W, Lambert MW, Olsen H, Hulbert MH. 1999. Early diagenesis: Impact of organic matter on mass physical properties and processes, California continental margin. Mar Geol 159:7–34.

    Article  CAS  Google Scholar 

  • Berner RA. 1971. Principles of Chemical Sedimentology. McGraw-Hill, New York, NY, USA. 240 p.

    Google Scholar 

  • Berner RA. 1980. Early Diagenesis: A Theoretical Approach. Princeton University Press, Princeton, NJ, USA. 241 p.

    Google Scholar 

  • Best AI, Richardson MD, Boudreau BP, Judd AG, Leifer I, Lyons AP, Martens CS, Orange DL, Wheeler SJ. 2006. Shallow seabed methane gas could pose coastal hazard. EOS: Trans Amer Geophys Union 87:213–217.

    Article  Google Scholar 

  • Biot MA. 1941. General theory of three-dimensional consolidation. J Appl Phys 12:155–164.

    Article  Google Scholar 

  • Biot MA. 1956. General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 23:91–96.

    Google Scholar 

  • Biot MA. 1973. Nonlinear and semilinear rheology of porous solids. J Geophys Res 78: 4924–4937.

    Article  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN. 2007. Transport Phenomena, 2nd ed. John Wiley & Sons, New York, NY, USA. 920 p.

    Google Scholar 

  • Boudreau BP. 1996. The diffusive tortuosity of fine-grained unlithified sediments. Geochimim Cosmochim Acta 60:139–3142.

    Google Scholar 

  • Boudreau BP. 1997. Diagenetic Models and their Implementation. Springer-Verlag, Berlin, Germany. 414 p.

    Book  Google Scholar 

  • Boudreau BP, Algar C, Johnson BD, Croudace I, Reed A, Furukawa Y, Dorgan KM, Jumars PA, Grader AS, Gardiner BS. 2005. Bubble growth and rise in soft sediments. Geol 33:517–520.

    Article  Google Scholar 

  • Boudreau BP, Bennett RH. 1999. New rheological and porosity equations for steady-state compaction. Am J Sci 299:517–528.

    Article  Google Scholar 

  • Boudreau BP, Meysman FJR. 2006. Predicted tortuosity of muds. Geol 34:693–696.

    Article  Google Scholar 

  • Breitzke M. 2006. Physical properties of marine sediments. In Schultz HD, Zabel M, eds, Marine Geochemistry, 2nd ed. Springer, Berlin, Germany, pp 27–71.

    Chapter  Google Scholar 

  • Broek D. 1982. Elementary Engineering Fracture Mechanics. Narinus Nijhoff, Boston, MA, USA. 469 p.

    Book  Google Scholar 

  • Burdige DJ. 2006. Geochemistry of Marine Sediments. Princeton University Press, Princeton, NJ, USA. 609 p.

    Google Scholar 

  • Clayton CRI, Heymann G. 2001. Stiffness of geomaterials at very small strains. Geotech 51:245–255.

    Article  Google Scholar 

  • Craig RF. 2004. Craig’s Soil Mechanics. Taylor and Francis, London, United Kingdom. 464 p.

    Google Scholar 

  • Das BM. 2008. Advanced Soil Mechanics. Taylor and Francis, London, United Kingdom. 600 p.

    Google Scholar 

  • Davis AM, Schultheiss PJ. 1980. Seismic signal processing in engineering-site investigation – a case history. Ground Eng 13:44–48.

    Google Scholar 

  • Davis RO, Selvadurai APS. 1996. Elasticity and Geomechanics. Cambridge University Press, Cambridge, United Kingdom. 256 p.

    Google Scholar 

  • Davis RO, Selvadurai APS. 2002. Plasticity and Geomechanics. Cambridge Univ. Press, Cambridge, United Kingdom. 304 p.

    Book  Google Scholar 

  • de Boer R. 1992. Development of porous media theories - A brief historical review. Transp Porous Media 9:155–164.

    Article  Google Scholar 

  • DiToro DM. 2001. Sediment Flux Modeling. Wiley-Interscience, New York, NY, USA. 624 p.

    Google Scholar 

  • Dorgan KM, Jumars PA, Johnson BD, Boudreau BP, Landis E. 2005. Burrow elongation by crack propagation. Nat 433:475.

    Article  CAS  Google Scholar 

  • Engelhardt WV, Gaida KH. 1963. Concentration changes of pore solutions during the compaction of clay sediments. J Sed Pet 33:919–930.

    Article  Google Scholar 

  • Gardiner BS, Boudreau BP, Johnson BD. 2003. Growth of disk-shaped bubbles in sediments. Geochim Cosmochim Acta 67:1485–1494.

    Article  CAS  Google Scholar 

  • Gasparre A, Nishimura S, Minh NA, Coop MR, Jardine RJ. 2007. The stiffness of natural London clay. Géotech 57:33–47.

    Article  Google Scholar 

  • Gibson RE. 1958. The progress of consolidation in a clay layer increasing in thickness with time. Géotechnique 8:171–182.

    Article  CAS  Google Scholar 

  • Gibson RE, Schiffman RL, Whitman RV. 1989. On two definitions of excess pore pressure. Géotechnique 39:169–171.

    Article  Google Scholar 

  • Giles MR. 1997. Diagenesis: A Quantitative Perspective. Kluwer Academic Publisher, Dordrecht, The Netherlands. 526 p.

    Google Scholar 

  • Gross D, Seelig T. 2006. Fracture Mechanics. Springer-Verlag, Berlin, Germany. 319 p.

    Google Scholar 

  • Haeckel M, Boudreau BP, Wallmann K. 2007. Bubble-induced porewater irrigation: A 3-D model for porewater mixing. Geochim Cosmochim Acta 71:5135–5154.

    Article  CAS  Google Scholar 

  • Hall TJ, Bilgen M, Insana MF, Krouskop TA. 1997. Phanton materials for elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 44:1355–1365.

    Article  Google Scholar 

  • Hamilton EL. 1971. Elastic properties of marine sediments. J Geophys Res 76:579–604.

    Article  Google Scholar 

  • Hamilton EL. 1979. vp/vs and poisson’s ratios in marine sediments and rocks. J Acoust Soc Am 66:1093–1101.

    Article  Google Scholar 

  • Hamilton EL, Bucker HP, Keir DL, Whitney JA. 1970. Velocities of compressional and shear waves in marine sediments determined from a research submersible. J Geophys Res 75:4039–4049.

    Google Scholar 

  • Hsiao SV, Shemdin OH. 1980. Interaction of ocean waves with a soft bottom. J Phys Oceanogr 10:605–611.

    Article  Google Scholar 

  • Hunter RJ. 2001. Foundations of Colloid Science, 2nd ed. Oxford University Press, Oxford, United Kingdom. 806 p.

    Google Scholar 

  • Jaeger JC. 1969. Elasticity, Fracture and Flow, with Engineering and Geological Applications. Chapman and Hall, London, United Kingdom. 268 p.

    Google Scholar 

  • Jiang F, Mehta A. 1995. Mudbanks of the southwest coast of India IV: Mud viscoelastic properties. J Coastal Res 11:918–926.

    Google Scholar 

  • Johnson BD, Boudreau BP, Gardiner BS, Maass R. 2002. Mechanical response of sediments to bubble growth. Mar Geol 187:247–363.

    Article  Google Scholar 

  • Johnson BD, Barry M, Boudreau BP, Jumars PA, Dorgan KM. 2012. Profiling fracture toughness in cohesive sediments. Geo-Mar Lett 32:39–48, doi: 10.1007/s00367-011-0243-1

    Article  Google Scholar 

  • Klein S. 2006. Sediment porewater exchange and solute release during ebullition. Mar Chem 102:60–71.

    Article  CAS  Google Scholar 

  • Koppula SD, Morgenstern NR. 1982. On the consolidation of sedimenting clays. Can Geotech J 19:260–268.

    Article  Google Scholar 

  • Lavoie D, Griffin SR, Grosz FB. 1996. DIAS - A novel technique for measuring in situ shear modulus. Geo-Marine Lett 16:254–260.

    Article  Google Scholar 

  • Lee K, Sills GC. 1981. The consolidation of a soil stratum, including self-weight effects and large strains. Int J Num Anal Meth Geomech 5:405–428.

    Article  Google Scholar 

  • L’Esperance JC. 2009. Simultaneous measurement of Young’s modulus and Poisson’s ratio of marine sediments with a simple uni-axial compression test. MSc Thesis, Dalhousie University, Canada. 218 p.

    Google Scholar 

  • Long RR. 1961. Mechanics of Solids and Fluids. Prentice-Hall, Engelwood Cliffs, NJ, USA. 156 p.

    Google Scholar 

  • Maa P-Y. 1986. Erosion of Soft Mud by Waves. PhD Dissertation, University of Florida, Gainesville, FL, USA. 286 p.

    Google Scholar 

  • Maa P-Y, Mehta AJ. 1988. Soft mud properties: Voigt model. J Waterw Port Coast Ocean Eng 114:634–650.

    Article  Google Scholar 

  • Markidou A, Shih WY, Shih W-H. 2005. Soft-materials elastic and shear moduli measurement using piezoelectric cantilevers. Rev Sci Instrum 76:064302; doi:10.1063/1.1928407.

    Article  Google Scholar 

  • Martens CS, Albert DB. 1995. Biogeochemical processes controlling concentrations and transport of biogenic methane in organic rich coastal sediments. In Wever TF, ed, Proceedings of the Workshop on Modeling Methane-Rich Sediments of Eckernforde Bay, Eckernforde, June 26–30, Forschungs Bundeswehr Wasserschall Geophysik, pp 10–17.

    Google Scholar 

  • Martens C, Klump J. 1980. Biogeochemical cycling in an organic-rich coastal marine basin-1. Methane sediment-water exchange processes. Geochim Cosmochim Acta 44:471–490.

    Article  CAS  Google Scholar 

  • McNabb A. 1960. A mathematical treatment of one-dimensional consolidation. Q Appl Math 17:337–347.

    Google Scholar 

  • Mehta AJ, Partheniades E. 1982. Resuspension of deposited cohesive sediment beds. Proceedings 18th Coastal Engineering Conference, v. 2, Cape Town, South Africa, pp 1569–1588.

    Google Scholar 

  • Menand T, Tait S. 2002. The propagation of a buoyant liquid-filled fissure from a source under constant pressure: an experimental approach. J Geophys Res 107:2306; doi:10.1029/2001JB000589.

    Article  Google Scholar 

  • Mitchell JK, Soga K. 2005. Fundamentals of Soil Behaviour, 3rd ed. Wiley, New York, NY, USA. 577p.

    Google Scholar 

  • Partheniades E. 1991. Effect of bed shear stresses on the deposition and strength of deposited cohesive muds. In Bennett RH, Bryant WR, Hulbert MH, eds, Microstructure of Fine-grained Sediments: From Mud to Shale. Springer Verlag, Berlin, Germany, pp 175–183.

    Chapter  Google Scholar 

  • Pickering DJ. 1970. Anisotropic elastic parameters for soil. Géotechnique 20:271–276.

    Google Scholar 

  • Raju LV, Ramana YV. 1986. Physical and elastic properties of marine sediments off Bombay. Indian Mar Geotechnol 6:359–375.

    Article  Google Scholar 

  • Rieke HH, Chilingarian GV. 1974. Compaction of Argillaceous Sediments. Elsevier, Amsterdam, The Netherlands. 424 p.

    Google Scholar 

  • Rivalta E, Dahm T. 2006. Acceleration of buoyancy-driven fractures and magmatic dikes beneath the free surface. Geophys J Int 166:1424–1439.

    Article  Google Scholar 

  • Salem HS. 2000. Poisson’s ratio and the porosity of surface soils and shallow sediments, determined from seismic compressional and shear wave velocities. Géotech 50:461–463.

    Article  Google Scholar 

  • Sato H, Katano M, Takigawa T, Masuda T. 2001. Estimation for the elasticity of vascular endothelial cells on the basis of atomic force microscopy and Young’s modulus of gelatin gels. Polymer Bull 47:375–381.

    Article  CAS  Google Scholar 

  • Schulz HD, Zabel M. 2006. Marine Chemistry, 2nd ed. Springer, Berlin, Germany. 574 p.

    Google Scholar 

  • Shames IH. 1964. Mechanics of Deformable Solids. Prentice-Hall, Engelwood Cliffs, NJ, USA. 532 p.

    Google Scholar 

  • Small JC, Booker JR, Davis EH. 1976. Elasto-plastic consolidation of soil. Int J Solids Struct 12:431–448.

    Article  Google Scholar 

  • Takada A. 1990. Experimental study on propagation of liquid-filled crack in gelatin: Shape and velocity in hydrostatic stress condition. J Geophys Res 95:8471–8481.

    Article  Google Scholar 

  • Terzaghi K. 1943. Theory of Soil Mechanics. John Wiley and Sons, New York, NY, USA. 510 p.

    Book  Google Scholar 

  • Thibodeaux LJ, Valsaraj KT, Reible DD. 2001. Bioturbation-driven transport of hydrophobic organic contaminants from bed sediment. Environ Eng Sci 18:215–233.

    Article  CAS  Google Scholar 

  • Timoshenko SP, Goodier JN. 1934. Theory of Elasticity (1970 printing). McGraw-Hill, New York, NY, USA. 567 p.

    Google Scholar 

  • Toorman EA. 1996. Sedimentation and self-weight consolidation: general unifying theory. Géotechnique 46:103–113.

    Article  Google Scholar 

  • Verreet G, Berlamont J. 1988. Rheology and non-Newtonian behavior of sea and estuarine mud. In Cheremisinoff NP, ed, Encyclopedia of Fluid Mechanics. Gulf Publishing Company, Houston, TX, USA, pp135–149.

    Google Scholar 

  • Wang HF. 2000. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology. Princeton University Press, Princeton, NJ, USA. 287 p.

    Google Scholar 

  • Weertman J. 1971a. Theory of water-filled crevasses in glaciers applied to vertical magma transport beneath oceanic ridges. J Geophy Res 76:1171–1183.

    Article  Google Scholar 

  • Weertman J. 1971b. Velocity at which liquid-filled cracks move in the Earth’s crust or in glaciers. J Geophys Res 76:8544–8553.

    Article  Google Scholar 

  • Williams PR, Williams DJA. 1989. Rheometry for concentrated cohesive suspensions. J Coastal Res 5:151–164.

    Google Scholar 

  • Winterwerp JC, van Kesteren WGM. 2004. Introduction to the Physics of Cohesive Sediment in the Marine Environment, Developments in Sedimentology 56. Elsevier, Amsterdam, The Netherlands. 466 p.

    Google Scholar 

  • Yong RN, Warkentin BP. 1966. Introduction to Soil Behavior. Macmillan, London, UK. 451 p.

    Google Scholar 

  • Yuan Q, Valsaraj KT, Reible DD, Willson CS. 2007. A laboratory study of sediment and contaminant release during gas ebullition. J Air Waste Manag Assoc 57:1103–1111.

    Article  CAS  Google Scholar 

  • Znidarcic D, Schiffman RL. 1982. On Terzaghi’s concept of consolidation. Géotechnique 32: 387–389.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank our partners-in-crime over the years, Bruce Gardiner (The University of Western Australia), Peter Jumars (The University of Maine), Kelly Dorgan (Scripps Institution of Oceanography, California), Yoko Furukawa (Naval Research Laboratory [NRL]), and Allan Reed (NRL) for sharing their inspiration and understanding. This work was supported by Natural Sciences and Engineering Research Council of Canada and U.S. Office of Naval Research. We also thank our reviewers for their considered comments. While we might not always have made the desired changes, we appreciate the opportunity to think about these issues.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

APPENDIX 4A

APPENDIX 4A

If a material is mapped (each point given a coordinate), then deformed, and the same points in the medium remapped, the resulting change in the position of an arbitrary point is called its displacement vector, u. The spatial derivatives of the displacement define the strain tensor, ε. Formally,

$$ \varvec{\varepsilon} =\frac{1}{2}\left[ {\nabla \varvec{u}+{{{(\nabla \varvec{u})}}^T}} \right] $$
(4.A1)

where ∇u is the displacement gradient matrix and the superscript T indicates the transpose. Thus, the tensile/compressive strain that occurs in the x direction is given by

$$ {\varepsilon_{xx }}=\frac{{\partial {u_x}}}{{\partial x}} $$
(4.A2)

and the subscripts can be dropped for a purely one-dimensional system, e.g., steady-state sediment compaction.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boudreau, B.P., Barry, M., L’Esperance, C., Algar, C.K., Johnson, B.D. (2014). The Mechanics of Soft Cohesive Sediments During Early Diagenesis. In: Reible, D. (eds) Processes, Assessment and Remediation of Contaminated Sediments. SERDP ESTCP Environmental Remediation Technology, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6726-7_4

Download citation

Publish with us

Policies and ethics