Skip to main content

Cancer Therapy-Induced Cardiomyopathy

  • Chapter
  • First Online:
Essential Cardiology

Abstract

Modern advances in cancer treatment have resulted in a steady improvement in life expectancy in cancer patients. However, cardiovascular toxicity is one of the most devastating complications threatening to offset the substantive reductions in cancer-related morbidity and mortality that has been achieved with novel chemotherapeutic agents. Cardiologists and oncologists must collaborate closely to provide effective cancer therapy to kill cancer cells while minimizing toxicity to the cardiovascular system. Structural, functional, or biochemical indicators of cardiac injury are emerging as potential markers for early detection of cardiotoxicity. Imaging modalities such as tissue Doppler imaging, strain imaging, and cardiac magnetic resonance imaging have shown promise in earlier detection of cardiotoxicity. Biomarkers such as troponin I may also play an adjunctive role in earlier recognition of cardiotoxicity and identifying high-risk patients. There have been significant advances in the understanding of the mechanisms of cancer therapy-induced cardiotoxicity. These new pathways have been instrumental in the testing of preventive therapies. Several agents have been investigated in their ability to protect normal cardiac tissue during cancer therapy. These include dexrazoxane, angiotensin-converting enzyme inhibitors, and beta-blockers. However, further studies are warranted to clarify the efficacy, safety, and cancer treatment-related effects of these agents. Once clinical signs or symptoms of cardiac dysfunction develop, the patients should be promptly treated with standard heart failure therapy, and offending agents should be stopped. In some patients, cancer therapy may be resumed following the restoration of cardiac function. Close collaboration between the cardiologists and oncologists will herald in a new era where cancer patients will have a healthy heart to enjoy life after cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.

    Article  PubMed  CAS  Google Scholar 

  2. Gharib MI, Burnett AK. Chemotherapy-induced cardiotoxicity: current practice and prospects of prophylaxis. Eur J Heart Fail. 2002;4:235–42.

    Article  PubMed  CAS  Google Scholar 

  3. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–7.

    Article  Google Scholar 

  4. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.

    Article  PubMed  CAS  Google Scholar 

  5. Shan K, Lincoff AM, Young JB. Anthracycline-induced cardiotoxicity. Ann Intern Med. 1996;125:47–58.

    Article  PubMed  CAS  Google Scholar 

  6. Ewer MS, Ali MK, Mackay B, et al. A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving adriamycin. J Clin Oncol. 1984;2:112–7.

    PubMed  CAS  Google Scholar 

  7. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    Article  PubMed  CAS  Google Scholar 

  8. Tan-Chiu E, Yothers G, Romond E, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol. 2005;23:7811–9.

    Article  PubMed  CAS  Google Scholar 

  9. Perez EA, Suman VJ, Davidson NE, et al. Cardiac safety analysis of doxorubicin and cyclophosphamide followed by paclitaxel with or without trastuzumab in the North Central Cancer Treatment Group N9831 adjuvant breast cancer trial. J Clin Oncol. 2008;26:1231–8.

    Article  PubMed  CAS  Google Scholar 

  10. Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–83.

    Article  PubMed  CAS  Google Scholar 

  11. Ewer MS, Swain SM, Cardinale D, et al. Cardiac dysfunction after cancer treatment. Tex Heart Inst J. 2011;38:248–52.

    PubMed  Google Scholar 

  12. Ewer MS, Lippman SM. Type ii chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23:2900–2.

    Article  PubMed  CAS  Google Scholar 

  13. Ewer MS, Vooletich MT, Durand JB, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23:7820–6.

    Article  PubMed  CAS  Google Scholar 

  14. Khakoo AY, Kassiotis CM, Tannir N, et al. Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer. 2008;112:2500–8.

    Article  PubMed  CAS  Google Scholar 

  15. Chen Y, Jungsuwadee P, Vore M, et al. Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv. 2007;7:147–56.

    Article  PubMed  CAS  Google Scholar 

  16. Tewey KM, Rowe TC, Yang L, et al. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science. 1984;226:466–8.

    Article  PubMed  CAS  Google Scholar 

  17. Lee KF, Simon H, Chen H, et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature. 1995;378:394–8.

    Article  PubMed  CAS  Google Scholar 

  18. Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature. 1995;378:386–90.

    Article  PubMed  CAS  Google Scholar 

  19. Gassmann M, Casagranda F, Orioli D, et al. Aberrant neural and cardiac development in mice lacking the erbB4 neuregulin receptor. Nature. 1995;378:390–4.

    Article  PubMed  CAS  Google Scholar 

  20. de Korte MA, de Vries EG, Lub-de Hooge MN, et al. 111indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43:2046–51.

    Article  PubMed  Google Scholar 

  21. Chintalgattu V, Ai D, Langley RR, et al. Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest. 2010;120:472–84.

    Article  PubMed  CAS  Google Scholar 

  22. de Geus-Oei LF, Mavinkurve-Groothuis AM, Bellersen L, et al. Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med. 2011;52:560–71.

    Article  PubMed  Google Scholar 

  23. Rumberger JA, Behrenbeck T, Bell MR, et al. Determination of ventricular ejection fraction: a comparison of available imaging methods. The cardiovascular imaging working group. Mayo Clin Proc. 1997;72:860–70.

    Article  PubMed  CAS  Google Scholar 

  24. Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55:213–20.

    Article  PubMed  CAS  Google Scholar 

  25. Tassan-Mangina S, Codorean D, Metivier M, et al. Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: early and late alterations of left ventricular function during a prospective study. Eur J Echocardiogr. 2006;7:141–6.

    Article  PubMed  Google Scholar 

  26. Marchandise B, Schroeder E, Bosly A, et al. Early detection of doxorubicin cardiotoxicity: interest of Doppler echocardiographic analysis of left ventricular filling dynamics. Am Heart J. 1989;118:92–8.

    Article  PubMed  CAS  Google Scholar 

  27. Ganame J, Claus P, Eyskens B, et al. Acute cardiac functional and morphological changes after anthracycline infusions in children. Am J Cardiol. 2007;99:974–7.

    Article  PubMed  CAS  Google Scholar 

  28. Tsai HR, Gjesdal O, Wethal T, et al. Left ventricular function assessed by two-dimensional speckle tracking echocardiography in long-term survivors of hodgkin’s lymphoma treated by mediastinal radiotherapy with or without anthracycline therapy. Am J Cardiol. 2011;107:472–7.

    Article  PubMed  Google Scholar 

  29. Ho E, Brown A, Barrett P, et al. Subclinical anthracycline- and trastuzumab-induced cardiotoxicity in the long-term follow-up of asymptomatic breast cancer survivors: a speckle tracking echocardiographic study. Heart. 2010;96:701–7.

    Article  PubMed  CAS  Google Scholar 

  30. Stoodley PW, Richards DA, Hui R, et al. Two-dimensional myocardial strain imaging detects changes in left ventricular systolic function immediately after anthracycline chemotherapy. Eur J Echocardiogr. 2011;12:945–52.

    Article  PubMed  Google Scholar 

  31. Fallah-Rad N, Walker JR, Wassef A, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57:2263–70.

    Article  PubMed  CAS  Google Scholar 

  32. Hare JL, Brown JK, Leano R, et al. Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. Am Heart J. 2009;158:294–301.

    Article  PubMed  CAS  Google Scholar 

  33. Sawaya H, Sebag IA, Plana JC, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375–80.

    Article  PubMed  CAS  Google Scholar 

  34. Klewer SE, Goldberg SJ, Donnerstein RL, et al. Dobutamine stress echocardiography: a sensitive indicator of diminished myocardial function in asymptomatic doxorubicin-treated long-term survivors of childhood cancer. J Am Coll Cardiol. 1992;19:394–401.

    Article  PubMed  CAS  Google Scholar 

  35. Weesner KM, Bledsoe M, Chauvenet A, et al. Exercise echocardiography in the detection of anthracycline cardiotoxicity. Cancer. 1991;68:435–8.

    Article  PubMed  CAS  Google Scholar 

  36. Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55:2614–62.

    Article  PubMed  Google Scholar 

  37. Wassmuth R, Lentzsch S, Erdbruegger U, et al. Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging-a pilot study. Am Heart J. 2001;141:1007–13.

    Article  PubMed  CAS  Google Scholar 

  38. Perel RD, Slaughter RE, Strugnell WE. Subendocardial late gadolinium enhancement in two patients with anthracycline cardiotoxicity following treatment for ewing’s sarcoma. J Cardiovasc Magn Reson. 2006;8:789–91.

    Article  PubMed  Google Scholar 

  39. Catalano O, Antonaci S, Moro G, et al. Contrast-enhanced cardiac magnetic resonance in a patient with chemotoxic cardiomyopathy. J Cardiovasc Med (Hagerstown). 2007;8:214–5.

    Article  Google Scholar 

  40. Fallah-Rad N, Lytwyn M, Fang T, et al. Delayed contrast enhancement cardiac magnetic resonance imaging in trastuzumab induced cardiomyopathy. J Cardiovasc Magn Reson. 2008;10:5.

    Article  PubMed  Google Scholar 

  41. Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined – a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36:959–69.

    Article  PubMed  CAS  Google Scholar 

  42. Antman EM, Tanasijevic MJ, Thompson B, et al. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med. 1996;335:1342–9.

    Article  PubMed  CAS  Google Scholar 

  43. Auner HW, Tinchon C, Linkesch W, et al. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol. 2003;82:218–22.

    PubMed  CAS  Google Scholar 

  44. Kilickap S, Barista I, Akgul E, et al. CTnT can be a useful marker for early detection of anthracycline cardiotoxicity. Ann Oncol. 2005;16:798–804.

    Article  PubMed  CAS  Google Scholar 

  45. Cardinale D, Colombo A, Torrisi R, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28:3910–6.

    Article  PubMed  CAS  Google Scholar 

  46. Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109:2749–54.

    Article  PubMed  CAS  Google Scholar 

  47. Cardinale D, Sandri MT, Martinoni A, et al. Left ventricular dysfunction predicted by early troponin i release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36:517–22.

    Article  PubMed  CAS  Google Scholar 

  48. Pichon MF, Cvitkovic F, Hacene K, et al. Drug-induced cardiotoxicity studied by longitudinal B-type natriuretic peptide assays and radionuclide ventriculography. In Vivo. 2005;19:567–76.

    PubMed  CAS  Google Scholar 

  49. Okumura H, Iuchi K, Yoshida T, et al. Brain natriuretic peptide is a predictor of anthracycline-induced cardiotoxicity. Acta Haematol. 2000;104:158–63.

    Article  PubMed  CAS  Google Scholar 

  50. Sandri MT, Salvatici M, Cardinale D, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51:1405–10.

    Article  PubMed  CAS  Google Scholar 

  51. Hensley ML, Hagerty KL, Kewalramani T, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol. 2009;27:127–45.

    Article  PubMed  CAS  Google Scholar 

  52. Hasinoff BB. Chemistry of dexrazoxane and analogues. Semin Oncol. 1998;25:3–9.

    PubMed  CAS  Google Scholar 

  53. Lyu YL, Kerrigan JE, Lin CP, et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67:8839–46.

    Article  PubMed  CAS  Google Scholar 

  54. Swain SM, Whaley FS, Gerber MC, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;15:1318–32.

    PubMed  CAS  Google Scholar 

  55. Tebbi CK, London WB, Friedman D, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric hodgkin’s disease. J Clin Oncol. 2007;25:493–500.

    Article  PubMed  CAS  Google Scholar 

  56. Granger CB. Prediction and prevention of chemotherapy-induced cardiomyopathy: can it be done? Circulation. 2006;114:2432–3.

    Article  PubMed  Google Scholar 

  57. Tokudome T, Mizushige K, Noma T, et al. Prevention of doxorubicin (adriamycin)-induced cardiomyopathy by simultaneous administration of angiotensin-converting enzyme inhibitor assessed by acoustic densitometry. J Cardiovasc Pharmacol. 2000;36:361–8.

    Article  PubMed  CAS  Google Scholar 

  58. Sacco G, Bigioni M, Evangelista S, et al. Cardioprotective effects of zofenopril, a new angiotensin-converting enzyme inhibitor, on doxorubicin-induced cardiotoxicity in the rat. Eur J Pharmacol. 2001;414:71–8.

    Article  PubMed  CAS  Google Scholar 

  59. Boucek Jr RJ, Steele A, Miracle A, et al. Effects of angiotensin-converting enzyme inhibitor on delayed-onset doxorubicin-induced cardiotoxicity. Cardiovasc Toxicol. 2003;3:319–29.

    Article  PubMed  CAS  Google Scholar 

  60. Okumura K, Jin D, Takai S, et al. Beneficial effects of angiotensin-converting enzyme inhibition in adriamycin-induced cardiomyopathy in hamsters. Jpn J Pharmacol. 2002;88:183–8.

    Article  PubMed  CAS  Google Scholar 

  61. Nakamae H, Tsumura K, Terada Y, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104:2492–8.

    Article  PubMed  CAS  Google Scholar 

  62. Cadeddu C, Piras A, Mantovani G, et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J. 2010;160:487. e481–487.

    Article  PubMed  Google Scholar 

  63. Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114:2474–81.

    Article  PubMed  CAS  Google Scholar 

  64. Silber JH, Cnaan A, Clark BJ, et al. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J Clin Oncol. 2004;22:820–8.

    Article  PubMed  CAS  Google Scholar 

  65. Oliveira PJ, Bjork JA, Santos MS, et al. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol. 2004;200:159–68.

    Article  PubMed  CAS  Google Scholar 

  66. Spallarossa P, Garibaldi S, Altieri P, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37:837–46.

    Article  PubMed  CAS  Google Scholar 

  67. Santos DL, Moreno AJ, Leino RL, et al. Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol Appl Pharmacol. 2002;185:218–27.

    Article  PubMed  CAS  Google Scholar 

  68. Thomas L, Bellmont S, Christen MO, et al. Cardiovascular and survival effects of sympatho-inhibitors in adriamycin-induced cardiomyopathy in rats. Fundam Clin Pharmacol. 2004;18:649–55.

    Article  PubMed  CAS  Google Scholar 

  69. Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48:2258–62.

    Article  PubMed  CAS  Google Scholar 

  70. Hunt SA, Abraham WT, Chin MH, et al. 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–90.

    Article  PubMed  Google Scholar 

  71. Jensen BV, Nielsen SL, Skovsgaard T. Treatment with angiotensin-converting-enzyme inhibitor for epirubicin-induced dilated cardiomyopathy. Lancet. 1996;347:297–9.

    Article  PubMed  CAS  Google Scholar 

  72. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;13:699–709.

    Article  PubMed  CAS  Google Scholar 

  73. Noori A, Lindenfeld J, Wolfel E, et al. Beta-blockade in adriamycin-induced cardiomyopathy. J Card Fail. 2000;6:115–9.

    PubMed  CAS  Google Scholar 

  74. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20:4517–22.

    Article  PubMed  CAS  Google Scholar 

  75. Fonarow GC, Abraham WT, Albert NM, et al. Influence of beta-blocker continuation or withdrawal on outcomes in patients hospitalized with heart failure: findings from the OPTIMIZE-HF program. J Am Coll Cardiol. 2008;52:190–9.

    Article  PubMed  CAS  Google Scholar 

  76. Shukla A, Yusuf S, Daher I, Lenihan D, Durand JB. High mortality rates are associated with withdrawal of beta blockers and ace inhibitors in chemotherapy-induced heart failure. Circulation. 2008;abstract:S_797.

    Google Scholar 

Recommended Readings

  • Cardinale D et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55:213–20.

    Article  PubMed  CAS  Google Scholar 

  • Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23:2900–2.

    Article  PubMed  CAS  Google Scholar 

  • Hare JL et al. Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. Am Heart J. 2009;158:294–301.

    Article  PubMed  CAS  Google Scholar 

  • Lyu YL et al. Topoisomerase IIbeta mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67:8839–46.

    Article  PubMed  CAS  Google Scholar 

  • Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward T. H. Yeh MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, P., Vejpongsa, P., Yeh, E.T.H. (2013). Cancer Therapy-Induced Cardiomyopathy. In: Rosendorff, C. (eds) Essential Cardiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6705-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6705-2_42

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6704-5

  • Online ISBN: 978-1-4614-6705-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics