Skip to main content

A Hybrid Control Approach to Nanopositioning

  • Chapter
  • First Online:
Smart Materials-Based Actuators at the Micro/Nano-Scale

Abstract

Precise position control on the nanometer and subnanometer scale, referred to as nanopositioning, is a key enabler for nanoscale science and engineering. In nanopositioning, feedback control is essential to meet the stringent requirements on accuracy, stability, and repeatability in the presence of model uncertainties and environmental disturbances. In this chapter, we review a new hybrid control approach to nanopositioning which is based on the combination of a continuous-time control law with impulsive modifications of the controller states. By using impulsive control, the limitations of conventional linear controllers can be overcome, such as the inherent trade-off between closed-loop bandwidth and resolution. We review the related literature, present an in-depth analysis of the stability and performance characteristics of impulsive control, and verify the theoretical conclusions experimentally using a custom-built atomic force microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57–61 (1982)

    Article  Google Scholar 

  2. G. Binnig, C. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  Google Scholar 

  3. L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitián, D. Peña, A. Gourdon, G. Meyer, Bond-order discrimination by atomic force microscopy. Science 337(6100), 1326–1329 (2012)

    Article  Google Scholar 

  4. D. Pires, J.L. Hedrick, A.D. Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A.W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328, 732–735 (2010)

    Article  Google Scholar 

  5. T. Ando, High-speed atomic force microscopy coming of age. Nanotechnology 23, 062001 (2012)

    Article  Google Scholar 

  6. E. Eleftheriou, T. Antonakopoulos, G. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Durig, M. Lantz, H. Pozidis, H. Rothuizen, P. Vettiger, Millipede - a MEMS-based scanning-probe data-storage system. IEEE Trans. Magn. 39(2) 938–945 (2003)

    Article  Google Scholar 

  7. A. Pantazi, A. Sebastian, T.A. Antonakopoulos, P. Baechtold, A.R. Bonaccio, J. Bonan, G. Cherubini, M. Despont, R.A. DiPietro, U. Drechsler, U. Duerig, B. Gotsmann, W. Haeberle, C. Hagleitner, J.L. Hedrick, D. Jubin, A. Knoll, M.A. Lantz, J. Pentarakis, H. Pozidis, R.C. Pratt, H. Rothuizen, R. Stutz, M. Varsamou, D. Wiesmann, E. Eleftheriou, Probe-based ultrahigh-density storage technology. IBM J. Res. Develop. 52(4.5), 493–511 (2008)

    Google Scholar 

  8. R.A. Oliver, Advances in AFM for the electrical characterization of semiconductors. Rep. Progr. Phys. 71(7), 076501 (2008)

    Article  Google Scholar 

  9. T. Tuma, A. Pantazi, J. Lygeros, A. Sebastian, Nanopositioning with impulsive state multiplication: a hybrid control approach. IEEE Trans. Contr. Syst. Technol. (2012, to appear)

    Google Scholar 

  10. T. Tuma, A. Sebastian, W. Häberle, J. Lygeros, A. Pantazi, Impulsive control for fast nanopositioning. Nanotechnology 22, 135501 (2011)

    Article  Google Scholar 

  11. T. Tuma, A. Pantazi, J. Lygeros, A. Sebastian, Comparison of two non-linear control approaches to fast nanopositioning: impulsive control and signal transformation. Mechatronics 22, 302–309 (2012)

    Article  Google Scholar 

  12. T. Tuma, A. Pantazi, J. Lygeros, A. Sebastian, Impulsive control for nanopositioning: stability and performance, in Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, ACM, pp. 173–180 (2011)

    Google Scholar 

  13. S.M. Salapaka, M.V. Salapaka, Scanning probe microscopy. IEEE Contr. Syst. Mag. 28(2), 65–83 (2008)

    Article  Google Scholar 

  14. D. Abramovitch, S. Andersson, L. Pao, G. Schitter, A tutorial on the mechanisms, dynamics, and control of atomic force microscopes, in Proceedings of the American Control Conference, IEEE, pp. 3488–3502 (2007)

    Google Scholar 

  15. S. Devasia, E. Eleftheriou, S.O.R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)

    Article  Google Scholar 

  16. S. Aphale, A. Fleming, S. Reza Moheimani, Integral resonant control of collocated smart structures. Smart Mater. Struct. 16, 439 (2007)

    Article  Google Scholar 

  17. A. Fleming, S. Aphale, S. Moheimani, A new method for robust damping and tracking control of scanning probe microscope positioning stages. IEEE Trans. Nanotechnol. 9(4), 438–448 (2010)

    Article  Google Scholar 

  18. A. Sebastian, A. Pantazi, S.O.R. Moheimani, H. Pozidis, E. Eleftheriou, Achieving subnanometer precision in a MEMS-based storage device during self-servo write process. IEEE Trans. Nanotechnol. 7(5), 586–595 (2008)

    Article  Google Scholar 

  19. G. Schitter, R. Stark, A. Stemmer, Fast contact-mode atomic force microscopy on biological specimen by model-based control. Ultramicroscopy 100(3), 253–257 (2004)

    Article  Google Scholar 

  20. S. Salapaka, A. Sebastian, J.P. Cleveland, M.V. Salapaka, High bandwidth nano-positioner: a robust control approach. Rev. Sci. Instrum. 73(9), 3232–3241 (2002)

    Article  Google Scholar 

  21. A. Sebastian, S. Salapaka, Design methodologies for robust nano-positioning. IEEE Trans. Contr. Syst. Technol. 13(6), 868–876 (2005)

    Article  Google Scholar 

  22. C. Lee, S.M. Salapaka, Robust broadband nanopositioning: fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework. Nanotechnology 20(3), 035501 (2009)

    Google Scholar 

  23. S. Bashash, N. Jalili, Robust adaptive control of coupled parallel piezo-flexural nanopositioning stages. IEEE/ASME Trans. Mechatron. 14(1), 11–20 (2009)

    Article  Google Scholar 

  24. S. Hara, Y. Yamamoto, T. Omata, M. Nakano, Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans. Automat. Contr. 33(7), 659–668 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Shan, K. Leang, Repetitive control with Prandtl-Ishlinskii hysteresis inverse for piezo-based nanopositioning, in Proceedings of the American Control Conference, IEEE, pp. 301–306 (2009)

    Google Scholar 

  26. D. Bristow, M. Tharayil, A. Alleyne, A survey of iterative learning control. IEEE Contr. Syst. Mag. 26(3), 96–114 (2006)

    Article  Google Scholar 

  27. K. Leang, Q. Zou, S. Devasia, Feedforward control of piezoactuators in atomic force microscope systems. IEEE Contr. Syst. Mag. 29, 70–82 (2009)

    Article  MathSciNet  Google Scholar 

  28. N.C. Singer, W.P. Seering, Preshaping command inputs to reduce system vibration. J. Dyn. Syst. Meas. Contr. 112(1), 76–82 (1990)

    Article  Google Scholar 

  29. A. Fleming, A. Wills, Optimal periodic trajectories for band-limited systems. IEEE Trans. Contr. Syst. Technol. 17(3), 552–562 (2009)

    Article  Google Scholar 

  30. I. Mahmood, S. Reza Moheimani, Fast spiral-scan atomic force microscopy. Nanotechnology 20, 365503 (2009)

    Article  Google Scholar 

  31. A. Kotsopoulos, T. Antonakopoulos, Nanopositioning using the spiral of archimedes: the probe-based storage case. Mechatronics 20(2), 273–280 (2010)

    Article  Google Scholar 

  32. A. Kotsopoulos, A. Pantazi, A. Sebastian, T. Antonakopoulos, High-speed spiral nanopositioning, in Proceedings of IFAC world congress, IFAC, pp. 2018–2023 (2011)

    Google Scholar 

  33. Y. Yong, S. Moheimani, I. Petersen, High-speed cycloid-scan atomic force microscopy. Nanotechnology 21, 365503 (2010)

    Article  Google Scholar 

  34. T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, A. Pantazi, High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories. Nanotechnology 23, 185501 (2012)

    Article  Google Scholar 

  35. T. Tuma, J. Lygeros, A. Sebastian, A. Pantazi, Optimal scan trajectories for high speed scanning probe microscopy, in Proceedings of the 2012 American Control Conference, IEEE, pp. 3791–3796 (2012)

    Google Scholar 

  36. R. Goebel, R. Sanfelice, A. Teel, Hybrid dynamical systems. IEEE Contr. Syst. Mag. 29(2), 28–93 (2009)

    Article  MathSciNet  Google Scholar 

  37. D. Liberzon, Switching in Systems and Control. Ser. Systems & Control: Foundations & Applications (Birkhäuser, Boston, 2003)

    Book  MATH  Google Scholar 

  38. J.C. Clegg, A nonlinear integrator for servomechanisms. Trans. AIEE, Part II. Appl. Ind. 77(2), 41–42 (1958)

    Google Scholar 

  39. I. Horowitz, P. Rosenbaum, Non-linear design for cost of feedback reduction in systems with large parameter uncertainty. Int. J. Contr. 21, 977–1001 (1975)

    Article  MATH  Google Scholar 

  40. D. Nesic, L. Zaccarian, A.R. Teel, Stability properties of reset systems. Automatica 44, 2019–2026 (2008)

    Article  MathSciNet  Google Scholar 

  41. D. Wu, G. Guo, Y. Wang, Reset integral-derivative control for HDD servo systems. IEEE Trans. Contr. Syst. Technol. 15(1), 161–167 (2007)

    Article  Google Scholar 

  42. D.D. Bainov, P.S. Simeonov, Systems with Impulse Effect: Stability, Theory and Applications. Ser. Ellis Horwood Series: Mathematics and Its Applications. Chichester, UK (Ellis Horwood, 1989)

    Google Scholar 

  43. G. Schitter, K.J. Astrom, B.E. DeMartini, P.J. Thurner, K.L. Turner, P.K. Hansma, Design and modeling of a high-speed AFM-Scanner. IEEE Trans. Contr. Syst. Technol. 15(5), 906–915 (2007)

    Article  Google Scholar 

  44. S.O.R. Moheimani, B.J.G. Vautier, Resonant control of structural vibration using charge-driven piezoelectric actuators. IEEE Trans. Contr. Syst. Technol. 13(6), 1021–1035 (2005)

    Article  Google Scholar 

  45. A.J. Fleming, S.O.R. Moheimani, Sensorless vibration suppression and scan compensation for piezoelectric tube nanopositioners. IEEE Trans. Contr. Syst. Technol. 14(1), 33–44 (2006)

    Article  Google Scholar 

  46. A. Fleming, S. Moheimani, A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners. Rev. Sci. Instrum. 76(7), 073707 (2005)

    Google Scholar 

  47. A. Sebastian, S.O.R. Moheimani, Signal transformation approach to fast nanopositioning. Rev. Sci. Instrum. 80(7), 076101-1–076101-3 (2009)

    Google Scholar 

  48. A. Bazaei, S.O.R. Moheimani, A. Sebastian, An analysis of signal transformation approach to triangular waveform tracking. Automatica 47(4), 838–847 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Bazaei, Y. Yong, S. Moheimani, A. Sebastian, Tracking of triangular references using signal transformation for control of a novel AFM scanner stage. IEEE Trans. Contr. Syst. Technol. 20(2), 453–464 (2012)

    Article  Google Scholar 

  50. H. Rothuizen, M. Despont, U. Drechsler, C. Hagleitner, A. Sebastian, D. Wiesmann, Design of power-optimized thermal cantilevers for scanning probe topography sensing, in Proceedings of IEEE 22nd International Conference on Micro Electro Mechanical Systems, IEEE, pp. 603–606 (2009)

    Google Scholar 

  51. A. Sebastian, D. Wiesmann, Modeling and experimental identification of silicon microheater dynamics: a systems approach. IEEE/ASME J. Microelectromech. Syst. 17(4), 911–920 (2008)

    Article  Google Scholar 

  52. V. Kartik, A. Sebastian, T. Tuma, A. Pantazi, H. Pozidis, D. Sahoo, High-bandwidth nanopositioner with magnetoresistance based position sensing. Mechatronics 22, 295–301 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Urs Egger and Walter Häberle for their support with the mechanical and electronic hardware used in the experiments. Special thanks go to Haris Pozidis and Evangelos Eleftheriou for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Sebastian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tuma, T., Sebastian, A., Lygeros, J., Pantazi, A. (2013). A Hybrid Control Approach to Nanopositioning. In: Rakotondrabe, M. (eds) Smart Materials-Based Actuators at the Micro/Nano-Scale. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6684-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6684-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6683-3

  • Online ISBN: 978-1-4614-6684-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics