Modeling and Robust H Control of a Nonlinear and Oscillating 2-dof Multimorph Cantilevered Piezoelectric Actuator

Chapter

Abstract

This chapter presents the characterization, modeling, and robust control of a nonlinear and oscillating 2-degrees of freedom (2-dof) piezoelectric cantilevered actuator. The actuator possesses a high resolution and a high bandwidth of the actuator, however, it is typified by a hysteresis and creep nonlinearities, a badly damped vibration and a strong coupling between the two axes. Based on the quadrilateral approach, a simple model which can account efficiently all these properties is proposed. Indeed, the model is linear followed by well-defined uncertainties and perturbations. In order to ensure certain performances, a robust standard H control technique is used to synthesize controllers for the 2-dof actuator. The experimental results confirm the efficiency of the proposed approach of modeling and control design.

Keywords

Sine Settling 

Notes

Acknowledgements

This work is supported by the national ANR-Emergence MYMESYS-project (ANR-11-EMMA-006: High Performances Embedded Measurement Systems for multiDegrees of Freedom Microsystems).

References

  1. 1.
    J. Agnus, N. Chaillet, C. Clévy, S. Dembélé, M. Gauthier, Y. Haddab, G. Laurent, P. Lutz, N. Piat, K. Rabenorosoa, M. Rakotondrabe, B. Tamadazte, Robotic microassembly and micromanipulation at FEMTO-ST. J. Micro. Bio. Robot. (JMBR), 8(2), 91–106 (2013)Google Scholar
  2. 2.
    M. Rakotondrabe, C. Clévy, P. Lutz, Modelling and robust position/force control of a piezoelectric microgripper, in IEEE—International Conference on Automation Science and Engineering (CASE), Scottsdale, AZ, USA, 2007, pp. 39–44Google Scholar
  3. 3.
    S. Devasia, E.E. Eleftheriou, R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)CrossRefGoogle Scholar
  4. 4.
    M. Rakotondrabe, K. Rabenorosoa, J. Agnus, N. Chaillet, Robust feedforward-feedback control of a nonlinear and oscillating 2-dof piezocantilever. IEEE Trans. Autom. Sci. Eng. (T-ASE) 8(3), 506–519 (2011)Google Scholar
  5. 5.
    M. Rakotondrabe, J. Agnus, P. Lutz, Feedforward and IMC-feedback control of a nonlinear 2-DOF piezoactuator dedicated to automated micropositioning tasks, in IEEE—CASE (International Conference on Automation Science and Engineering), Trieste, Italy, August 2011, pp. 393–398Google Scholar
  6. 6.
    R. Pérez, J. Agnus, C. Clévy, A. Hubert, N. Chaillet, Modeling, fabrication and validation of a high performance 2-DOF piezoactuator for micromanipulation. IEEE/ASME Trans. Mechatron. (T-mech), 10(2), 161–171 (2005)Google Scholar
  7. 7.
    M. Rakotondrabe, Y. Haddab, P. Lutz, Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever. IEEE Trans. Contr. Syst. Technol. (T-CST) 17(3), 528–539 (2009)Google Scholar
  8. 8.
    M. Rakotondrabe, C. Clévy, P. Lutz, Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilever. IEEE Trans. Autom. Sci. Eng. (TASE) 7(3), 440–450 (2010)Google Scholar
  9. 9.
    M. Rakotondrabe, Piezoelectric Cantilevered Structures: Modeling, Control and Measurement/Estimation Aspects (Springer, Berlin, 2013)Google Scholar
  10. 10.
    M. Rakotondrabe, Y. Haddab, P. Lutz, Modelling and H-inf force control of a nonlinear piezoelectric cantilever, in IEEE/RSJ—IROS (International Conference on Intelligent Robots and Systems), San Diego, CA, USA, October–November 2007, pp. 3131–3136Google Scholar
  11. 11.
    S. Devasia, E.E. Eleftheriou, R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)CrossRefGoogle Scholar
  12. 12.
    D. Croft, G. Shed, S. Devasia, Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application. ASME J. Dyn. Syst. Meas. Contr. 123(1), 35–43 (2001)CrossRefGoogle Scholar
  13. 13.
    A. Dubra, J. Massa, C.l. Paterson, Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors. Opt. Express 13(22), 9062–9070 (2005)Google Scholar
  14. 14.
    W.T. Ang, P.K. Kholsa, C.N. Riviere, Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)CrossRefGoogle Scholar
  15. 15.
    B. Mokaberi, A.A.G. Requicha, Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. ASE 5(2), 197–208 (2008)Google Scholar
  16. 16.
    M. Rakotondrabe, Classical Prandtl–Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators, in ACC (American Control Conference), Montréal, Canada, June 2012, pp. 1646–1651Google Scholar
  17. 17.
    M. Rakotondrabe, Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. ASE 8(2), pp. 428–431 (2011)Google Scholar
  18. 18.
    M. Rakotondrabe, Y. Haddab, P. Lutz, Plurilinear modeling and discrete μ-synthesis control of a hysteretic and creeped unimorph piezoelectric cantilever, in IEEE—ICARCV (International Conference on Automation, Robotics, Control and Vision), Singapore, December 2006, pp. 57–64Google Scholar
  19. 19.
    L. Ljung, System identification toolbox, for use with Matlab. The Matworks (1995)Google Scholar
  20. 20.
    K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice Hall, Englewood Cliffs, 1995)Google Scholar
  21. 21.
    K. Glover, J.C. Doyle, State-space formulae for all stabilizing controllers that satisfy an H -norm bound and relations to risk sensitivity. Syst. Contr. Lett. 11, 167–172 (1988)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    J.C. Doyle, K. Glover, P.K. Khargonekar, B.A. Francis, State-space solutions to standard H 2 and H control problems. IEEE Trans. Automat. Contr. AC 34(8), 831–846 (1989)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Automatic Control and Micro-Mechatronic Systems DepartmentAS2M, FEMTO-ST InstituteBesançonFrance

Personalised recommendations