Skip to main content

Design of Piezoelectric Actuators with Guaranteed Performances Using the Performances Inclusion Theorem

  • Chapter
  • First Online:
Smart Materials-Based Actuators at the Micro/Nano-Scale

Abstract

This chapter presents the design of piezoelectric actuators by using the performances inclusion theorem (PIT). The main objective is to seek for the dimensions of a cantilevered actuator such that its performances will lie within some specifications imposed a priori. For that, these specifications are transcribed into an interval transfer function, called interval reference model, while an interval model of the actuator is also provided. Then, from the PIT, a problem of finding the dimensions is yielded such that this latter model is enclosed in the reference model. The problem is seen as a set-inversion problem that can be solved with interval tools such as the SIVIA (Set Inversion Via Interval Analysis) algorithms. The designed piezoelectric actuator is afterwards fabricated and characterized. The experimental characterizations demonstrate the efficiency of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Bergander, W. Driesen, T. Varidel, M. Meizoso, J.M. Breguet, Mobile cm3-microrobots with tools for nanoscale imaging and micromanipulation, in Mechatronics & Robotics (MechRob 2004), Aachen, Germany, 13–15 Sept 2004, pp. 1041–1047

    Google Scholar 

  2. S. Fatikow, T. Wich, H. Hulsen, T. Sievers, M. Jahnisch, Microrobot system for automatic nanohandling inside a scanning electron microscope. IEEE/ASME Trans. Mechatron. 12(3), 244–252 (2007)

    Article  Google Scholar 

  3. M. Rakotondrabe, Y. Haddab, P. Lutz, Development, modeling, and control of a micro/ nanopositioning 2-DOF stick-slip device. IEEE/ASME Trans. Mechatron. 14(6), 733–745 (2009)

    Article  Google Scholar 

  4. Physikinstrumente, Selection guide: linear flexure stages and actuators/nanopositioning systems, http://www.physikinstrumente.com/en/products/nanopositioning/nanopositioning_linear-stage_selection.php (2012)

  5. K. Uchino, Piezoelectric ultrasonic motors: overview. Smart Mater. Struct. 7(3), 273–285 (1998)

    Article  MathSciNet  Google Scholar 

  6. R. Lee, H.L. Li, Development and characterization of a rotary motor driven by anisotropic piezoelectric composite laminate. Smart Mater. Struct. 7(3), 327–336 (1998)

    Article  Google Scholar 

  7. S.H. Jun, S.M. Lee, S.H. Lee, H.E. Kim, K.W. Lee, Piezoelectric linear motor with unimorph structure by co-extrusion process. Sens. Act. A. 147(1), 300–303 (2008)

    Article  Google Scholar 

  8. G. Binnig, C.F. Quate, Ch. Gerber. Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986)

    Article  Google Scholar 

  9. R. Perez, J. Agnus, C. Clevy, A. Hubert, N. Chaillet, Modeling, fabrication and validation of a high performance 2-DOF piezoactuator for micromanipulation. IEEE/ASME Trans. Mechatron. 10(2), 161–171 (2005)

    Article  Google Scholar 

  10. M. Rakotondrabe, A. Ivan, Development and dynamic modeling of a new hybrid thermo-piezoelectric micro-actuator. IEEE Trans. Robot. 26(6), 1077–1085 (2010)

    Article  Google Scholar 

  11. M. Grossard, C. Rotinat-Libersa, N. Chaillet, M. Boukallel, Mechanical and control-oriented design of a monolithic piezoelectric microgripper using a new topological optimization method. IEEE/ASME Trans. Mechatron. 1(14), 32–45 (2009)

    Article  Google Scholar 

  12. M. Rakotondrabe, Performances inclusion for stable interval systems, in ACC (American Control Conference), San Francisco CA, USA, June–July 2011, pp. 4367–4372

    Google Scholar 

  13. R.E. Moore, Interval Analysis (Prentice-Hall, Englewood Cliffs, 1966)

    MATH  Google Scholar 

  14. L. Jaulin, M. Kieffer, O. Didrit, E. Walter, Applied Interval Analysis (Springer, London, 2001)

    Book  MATH  Google Scholar 

  15. M. Rakotondrabe, Piezoelectric Cantilevered Structures: Modeling, Control, and Measurement/Estimation Aspects (Springer, Berlin 2013)

    Google Scholar 

  16. R.G. Ballas, Piezoelectric Multilayer Beam Bending Actuators: Static and Dynamic Behavior and Aspects of Sensor Integration (Springer, Berlin, 2007)

    Google Scholar 

  17. L. Jaulin, E. Walter, Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica 29(4), 1053–1064 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the national ANR-JCJC C-MUMS-project (National young investigator project ANR-12-JS03007.01: Control of Multivariable Piezoelectric Microsystems with Minimization of Sensors).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micky Rakotondrabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rakotondrabe, M., Khadraoui, S. (2013). Design of Piezoelectric Actuators with Guaranteed Performances Using the Performances Inclusion Theorem. In: Rakotondrabe, M. (eds) Smart Materials-Based Actuators at the Micro/Nano-Scale. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6684-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6684-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6683-3

  • Online ISBN: 978-1-4614-6684-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics