Biosafety and Environmental Releases of GM Crops in Mesoamerica: Context Does Matter

Part of the Ethnobiology book series (EBL)


Since the use of products from modern biotechnology entails potential risks and possible adverse effects to human health and the environment, it is only reasonable to pursue that its use is done under responsible biosafety frameworks.

Context is an indispensable consideration for biosafety practices. Mesoamerica is an important Megadiverse region, a Vavilov center of origin and genetic diversity of a diverse range of economically relevant crops fundamental to humankind. Nevertheless, baseline data obtained locally hardly exists so as to be able to set out the important questions in relation to the technology that is being promoted to be used. It cannot be assumed that potential risks can be analyzed in an abstract and generic receiving environment and translated to any one new setting and expect it to “act accordingly.”

The in situ conservation of the genetic diversity of local landraces and wild relatives is fundamental to maintain the continuously evolving genetic capital of a crop, which is a source to respond to possible productive challenges. We elaborate on two approaches to consider biosafety and protection aspects in Mexico, given its context: the establishment of biosafety levels to be considered during risk analysis, and protection frames.


Biosafety In situ conservation Wild relatives Risk analysis 



This text is the result of an accumulation of work undergone under the auspices of the National Commission of Knowledge and Use of Biodiversity (CONABIO) as well as to several fundings from GEF and SEMARNAT, as well as collaborations with diverse research institutions and the never ending support of the CARB. Maps were developed by Oswaldo Oliveros.


  1. 1.
    Secretariat of the Convention on Biological Diversity. Cartagena Protocol on Biosafety to the Convention on Biological Diversity: text and annexes [Internet]. 2000 [cited 2014 May 15].
  2. 2.
    James C. Global status of commercialized biotech/GM crops: 2013. ISAAA Brief No. 46. Ithaca: ISAAA; 2013.Google Scholar
  3. 3.
    Hernández-Xolocotzi E. Aspects of plant domestication in Mexico. In: Ramamoorthy TP, Bye R, Lot A, Fa J, editors. Biological diversity of Mexico: Origins and distribution. New York: Oxford University Press; 1993.Google Scholar
  4. 4.
    Vavilov NI. Origin and geography of cultivated plants. In: Doroyev VF, editor. Löve D, transl. Cambridge: Cambridge University Press; 1994.Google Scholar
  5. 5.
    Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–8.CrossRefPubMedGoogle Scholar
  6. 6.
    García-Alonso M, Hendley P, Bigler F, Mayeregger E, Parker R, Rubinstein C, Satorre E, Solari F, McLean MA. Transportability of confined field trial data for environmental risk assessment of genetically engineered plants: a conceptual framework. Transgenic Res. 2014;23(6):1025–41.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fryxell PA. Malvaceae of Mexico. Systematic Botany Monographs Vol. 25: The American Society of Plant Taxonomists; 1988.Google Scholar
  8. 8.
    Wegier AL. Diversidad genética y conservación de Gossypium hirsutum silvestre y cultivado en México [PhD thesis]. México DF: Universidad Nacional Autónoma de México; 2013.Google Scholar
  9. 9.
    Wegier A, Piñeyro-Nelson A, Alarcón J, Gálvez-Mariscal A, Álvarez-Buylla ER, Piñero D. Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin. Mol Ecol. 2011;20:4182–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Wegier AL, Alavez-Gómez V, Jardón-Barbolla LO, Moyers L, Ortega del Vecchyo D, Piñero D. Informe final del proyecto “Analisis para la determinación de los centros de origen y diversidad de las especies mexicanas del género Gossypium”. Instituto de Ecología. Mexico [Internet]. 2010. [cited 2014 May 15].
  11. 11.
    Montes-Hernández S, Eguiarte LE. Genetic structure and indirect estimates of gene flow in three taxa of Cucurbita (Cucurbitaceae) in Western Mexico. Am J Bot. 2002;89(7):1156–63.CrossRefPubMedGoogle Scholar
  12. 12.
    Piñero D, Caballero-Mellado, Cabrera-Toledo, et al. La diversidad genética como instrumento para la conservación y el aprovechamiento de la biodiversidad: estudios en especies mexicanas. In: CONABIO. Capital natural de México, vol. I: Conocimiento actual de la biodiversidad. México: Conabio; 2008.Google Scholar
  13. 13.
    Bellón MR, Barrientos-Priego AF, Colunga-García Marín P, et al. Diversidad y conservación de recursos genéticos en plantas cultivadas. In: CONABIO. Capital natural de México, vol. II: Estado de conservación y tendencias de cambio. Mexico: Conabio; 2009.Google Scholar
  14. 14.
    DOF. Ley de Bioseguridad de Organismos Genéticamente. Diario Oficial de la Federación, México [Internet]. 2005 [cited 2014 May 15].
  15. 15.
    CONABIO. Elementos para la determinación de centros de origen y centros de diversidad genética para el caso de los maíces de México a partir de los resultados del proyecto “Recopilación, generación, actualización y análisis de información acerca de la diversidad genética de maíces nativos y sus parientes silvestres en México” (2006–2011) [Internet]. 2011 [cited 2014 May 15].
  16. 16.
    Skovman B. Colección, preservación y caracterización de cultivares criollos de origen español de trigo y centeno de México. CIMMYT. Bases de datos SNIB2010-CONABIO proyecto No. E001. México [Internet] 1997. [cited 2014 May 15].
  17. 17.
    Reynolds MP, Hodson D, Trethowan R, et al. Evaluación de la resistencia a sequía en razas criollas mexicanas de trigo (Triticum aestivum) y determinación de relaciones entre la respuesta de sequía y el lugar de colecta mediante las herramientas de GIS. CIMMYT. Informe final SNIB-CONABIO proyecto No. DE014. México [Internet]. 2009. [cited 2014 May 15].
  18. 18.
    Acevedo F, Huerta E, Lorenzo S, Ortiz S. La bioseguridad en México y los organismos genéticamente modificados: cómo enfrentar un nuevo desafío. In: CONABIO. Capital natural de México, vol. II: Estado de conservación y tendencias de cambio. Mexico: Conabio; 2009.Google Scholar
  19. 19.
    Burgeff C, Huerta E, Acevedo F, Sarukhán J. How much can GMO and non GMO cultivars coexist in a megadiverse country. 2014. 17(1):90–101.Google Scholar
  20. 20.
    FAOSTAT. [Internet] 2013. [cited 2013 September 20].
  21. 21.
    Bourges H. Alimentos obsequio de México al mundo. In: Alarcón-Segovia D, Bourges H, editors. La alimentación de los mexicanos. Mexico: El Colegio Nacional; 2002.Google Scholar
  22. 22.
    CONABIO. Elementos para la determinación de centros de origen y centros de diversidad genética en general y el caso específico de la liberación experimental de maíz transgénico al medio ambiente en México [Internet] 2006. [cited 2014 May 15].
  23. 23.
    Acevedo F, Huerta E, Burgeff C, Koleff P, Sarukhán J. Is transgenic maize what Mexico really needs? Nat Biotechnol. 2011;29(1):23–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Comisión Nacional para el Conocimiento y Uso de la BiodiversidadMéxicoMéxico

Personalised recommendations