Your Beans of the Last Harvest and the Possible Adoption of Bright Ideas

Chapter
Part of the Ethnobiology book series (EBL)

Abstract

This review considers which species of beans were domesticated out of a total of 80 or so species in tropical America, and the morpho- and ecological reasons and other nutritional aspects behind the choices of Amerindians who knew and experimented a lot with the flora. It explains why places of domestication refer to the locations where seeds of wild forms were picked for the last time. It further shows the current discrepancies between the archaeological records and the genetic data. The seven domestication events affecting the genus Phaseolus, five in Mesoamerica and two in the Andes, seem to have happened originally outside the presence of maize and before the wide use of ceramics, with food uses possibly different from the ones known nowadays (like toasting). The bright idea by Amerindians was to combine maize and beans into a performant agronomic and nutritional association that diffused so widely in pre-Columbian America and set the basis for the many brilliant civilizations they left us.

Keywords

Phaseolus Amerindians Crop wild relatives Phylogeography Archaeology Domestication Founder effect Maize 

Notes

Acknowledgments

I am grateful to Rafael Lira and Alejandro Casas for the invitation to participate into this project. The Consortium of the Consultative Group on International Agricultural Research, the International Board for Plant Genetic Resources, the Global Crop Diversity Trust, the United States Department of Agriculture, the Deutsche Gesellschaft für Internationale Zusammenarbeit of Germany are fully acknowledged for grants at different times, namely for the field work that helped me to interact with farmers and wild beans throughout Latin America since 1977. Special thanks are due to Josefina Martínez for the finalization of the manuscript. The help by Mariano Mejía to get rare publications is deeply acknowledged. All shortcomings are my responsibility.

References

  1. 1.
    Albala K. Beans—a history. Oxford: Berg; 2007.Google Scholar
  2. 2.
    Dragonwagon C. Bean by bean. New York: Workman; 2011.Google Scholar
  3. 3.
    National Research Council. Lost crops of the Incas: little known plants of the Andes with promise for worldwide cultivation. Washington, DC: National Academy Press; 1989.Google Scholar
  4. 4.
    Davidson A. The Oxford companion to food. 2nd ed. New York: Oxford University Press; 2006.CrossRefGoogle Scholar
  5. 5.
    Toussaint-Samat M. A history of food. Oxford: Blackwell; 1992.Google Scholar
  6. 6.
    Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J. Beans (Phaseolus spp.)—model food legumes. Plant Soil. 2003;252(1):55–128.CrossRefGoogle Scholar
  7. 7.
    Silbernagel MJ, Janssen W, Davis JHC. Montes de Oca G. Snap bean production in the tropics: implications for genetic improvement. In: Schoonhoven A, Voysest O, editors. Common beans: research for crop improvement. Wallingford: Commonwealth Agricultural Bureaux International; 1991.Google Scholar
  8. 8.
    Bergreen L. Columbus: the four voyages, 1492–1504. New York: Penguin Books; 2011.Google Scholar
  9. 9.
    De la Vega G. Comentarios reales de los Incas. Libreria Internacional del Perú: Lima; 1609.Google Scholar
  10. 10.
    Estrada-Lugo EIJ. El Códice Florentino: su información etnobotánica. Colegio de Postgraduados: Chapingo, Estado de México; 1989.Google Scholar
  11. 11.
    Parodi LR. La agricultura aborigen argentina. Buenos Aires: Editorial Universitaria de Buenos Aires; 1966.Google Scholar
  12. 12.
    Soustelle J. La vie quotidienne des Aztèques à la veille de la conquête espagnole. Paris: Hachette; 1955.Google Scholar
  13. 13.
    Heiser CB. Seed to civilization—the story of food. Cambridge, MA: Harvard University Press; 1990.CrossRefGoogle Scholar
  14. 14.
    Nabhan GP, Felger RS. Teparies in southwestern North America—a biogeographical and ethnohistorical study of Phaseolus acutifolius. Econ Bot. 1978;32(1):3–19.CrossRefGoogle Scholar
  15. 15.
    Bukasov SM. The cultivated plants of Mexico, Guatemala and Colombia. Bull Appl Bot Genet Pl Breed Leningrad Suppl. 1930;47:464.Google Scholar
  16. 16.
    Martínez M. Catálogo de nombres vulgares y científicos de plantas mexicanas. México, DF: Fondo de Cultura Económica; 1979.Google Scholar
  17. 17.
    Schmit V, Debouck DG. Observations on the origin of Phaseolus polyanthus Greenman. Econ Bot. 1991;45(3):345–64.CrossRefGoogle Scholar
  18. 18.
    Hernández-Xolocotzi E, Miranda-Colín S, Prywer C. El origen de Phaseolus coccineus L. subsp. darwinianus Hdz X. & Miranda C., subspecies nova. Rev Soc Mex Hist Nat. 1959;20(1–4):99–121.Google Scholar
  19. 19.
    Chacón-Sánchez MI, Motta-Aldana JR, Serrano-Serrano ML, Debouck DG. Domestication of Lima beans: a new look at an old problem. In: Gepts P, Famula TR, Bettinger RL, Brush SB, Damania AB, McGuire PE, Qualset CO, editors. Biodiversity in agriculture: domestication, evolution, and sustainability. Cambridge: Cambridge University Press; 2012.Google Scholar
  20. 20.
    Brown CH. Prehistoric chronology of the common bean in the New World: the linguistic evidence. Am Anthropol. 2006;108(3):507–16.CrossRefGoogle Scholar
  21. 21.
    Voysest O. Variedades de frijol en América Latina y su origen. Centro Internacional de Agricultura Tropical: Cali; 1983.Google Scholar
  22. 22.
    De Candolle A. Origine des plantes cultivées. Paris: Librairie Germer Baillière et Cie; 1883.Google Scholar
  23. 23.
    Cavalli-Sforza L. Genes, peoples, and languages. Berkeley: University of California Press; 2000.Google Scholar
  24. 24.
    Cavalli-Sforza L, Menozzi P, Piazza A. The history and geography of human genes. Princeton: Princeton University Press; 1994.Google Scholar
  25. 25.
    Crystal D. The Cambridge encyclopedia of language. 2nd ed. Cambridge: Cambridge University Press; 1997.Google Scholar
  26. 26.
    Dixon RMW. The rise and fall of languages. Cambridge: Cambridge University Press; 1997.CrossRefGoogle Scholar
  27. 27.
    Greenberg JH. Language in the Americas. Stanford: Stanford University Press; 1987.Google Scholar
  28. 28.
    Nichols J. The origin and dispersal of languages: linguistic evidence. In: Jablonski NG, Aiello LC, editors. The origin and diversification of language. San Francisco: Memoirs of the California Academy of Sciences No. 24; 1998.Google Scholar
  29. 29.
    Kaplan L, Lynch T. Phaseolus (Fabaceae) in archaeology: AMS radiocarbon dates and their significance for pre-Colombian agriculture. Econ Bot. 1999;53(3):261–72.CrossRefGoogle Scholar
  30. 30.
    Harlan JR. Crops and man. 2nd ed. Madison: American Society of Agronomy Inc. and Crop Science Society of America Inc.; 1992.Google Scholar
  31. 31.
    Gepts P, Debouck DG. Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In: Van Schoonhoven A, Voysest O, editors. Common beans: research for crop improvement. Wallingford: Commonwealth Agricultural Bureaux International; 1991.Google Scholar
  32. 32.
    Papa R, Bellucci E, Rossi M, Leonardi S, Rau D, Gepts P, Nanni L, Attene G. Tagging the signatures of domestication in common bean (Phaseolus vulgaris) by means of pooled DNA samples. Ann Bot. 2007;100(5):1039–51.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet. 2013;14:840–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Harlan JR. The living fields—our agricultural heritage. New York: Cambridge University Press; 1995.Google Scholar
  35. 35.
    Heiser CB. Some considerations of early plant domestication. BioScience. 1969;19(3):228–31.CrossRefGoogle Scholar
  36. 36.
    Pearman G. Nuts, seeds, and pulses. In: Prance G, Nesbitt N, editors. The cultural history of plants. New York: Routledge; 2005.Google Scholar
  37. 37.
    Sauer JD. Historical geography of crop plants—a select roster. Boca Raton: CRC Press; 1993.Google Scholar
  38. 38.
    Freytag GF, Debouck DG. Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. SIDA Bot Misc. 2002;23:1–300.Google Scholar
  39. 39.
    Porch TG, Beaver JS, Debouck DG, Jackson S, Kelly JD, Dempewolf H. Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy. 2013;3:433–61.CrossRefGoogle Scholar
  40. 40.
    Delgado-Salinas A, Bibler R, Lavin M. Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot. 2006;31(4):779–91.CrossRefGoogle Scholar
  41. 41.
    Serrano-Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG, Chacón-Sánchez MI. Gene pools in wild Lima beans (Phaseolus lunatus L.) from the Americas: evidences for an Andean origin and past migrations. Mol Phylogenet Evol. 2010;54(1):76–87.PubMedCrossRefGoogle Scholar
  42. 42.
    Sousa-Sánchez M, Delgado-Salinas A. Mexican Leguminosae: phytogeography, endemism, and origins. In: Ramamoorthy TP, Bye R, Lot A, Fa J, editors. Biological diversity of Mexico: origins and distribution. New York: Oxford University Press; 1993.Google Scholar
  43. 43.
    Coates AG. The forging of Central America. In: Coates AG, editor. Central America—a natural and cultural history. New Haven: Yale University Press; 1997.Google Scholar
  44. 44.
    Graham A. A natural history of the New World—the ecology and evolution of plants in the Americas. Chicago: The University of Chicago Press; 2011.Google Scholar
  45. 45.
    Debouck DG. Diversity in Phaseolus species in relation to the common bean. In: Singh SP, editor. Common bean improvement in the twenty-first century. Dordrecht: Kluwer Academic; 1999.Google Scholar
  46. 46.
    Muñoz LC, Blair MW, Duque MC, Tohme J, Roca W. Introgression in common bean × tepary bean interspecific congruity-backcross lines as measured by AFLP markers. Crop Sci. 2004;44(2):637–45.CrossRefGoogle Scholar
  47. 47.
    Waines JG, Manshardt RM, Wells WC. Interspecific hybridization between Phaseolus vulgaris and P. acutifolius. In: Gepts P, editor. Genetic resources of Phaseolus beans. Dordrecht: Kluwer Academic; 1988.Google Scholar
  48. 48.
    Chacón-Sánchez MI, Pickersgill B, Debouck DG, Arias S. Phylogeographic analysis of the chloroplast DNA variation in wild common bean (Phaseolus vulgaris L.) in the Americas. Plant Syst Evol. 2007;266(3–4):175–95.CrossRefGoogle Scholar
  49. 49.
    Gepts P, Papa R, Coulibaly S, González-Mejía A, Pasquet R. Wild legume diversity and domestication—insights from molecular methods. In: Oono K, editor. Wild legumes. Ibaraki: Ministry of Agriculture, Forestry and Fisheries, and National Institute of Agrobiological Resources, Tsukuba; 2000.Google Scholar
  50. 50.
    Kwak M, Gepts P. Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet. 2009;118(5):979–92.PubMedCrossRefGoogle Scholar
  51. 51.
    Tohme J, González DO, Beebe S, Duque MC. AFLP analysis of gene pools of a wild bean core collection. Crop Sci. 1996;36(4):1375–84.CrossRefGoogle Scholar
  52. 52.
    Brücher H. The wild ancestor of Phaseolus vulgaris in South America. In: Gepts P, editor. Genetic resources of Phaseolus beans. Dordrecht: Kluwer Academic; 1988.Google Scholar
  53. 53.
    Delgado-Salinas A, Bonet A, Gepts P. The wild relative of Phaseolus vulgaris in Middle America. In: Gepts P, editor. Genetic resources of Phaseolus beans. Dordrecht: Kluwer Academic; 1988.Google Scholar
  54. 54.
    González-Mejia A, Lynch J, Tohme JM, Beebe SE, Macchiavelli RE. Characters related to leaf photosynthesis in wild populations and landraces of common bean. Crop Sci. 1995;35(5):1468–76.CrossRefGoogle Scholar
  55. 55.
    Koinange EMK, Gepts P. Hybrid weakness in wild Phaseolus vulgaris L. J Hered. 1992;83(2):135–9.Google Scholar
  56. 56.
    Wells S. The journey of man—a genetic odyssey. New York: Random House; 2003.Google Scholar
  57. 57.
    Zimmer C. Smithsonian intimate guide to human origins. Toronto: Madison Press Books; 2005.Google Scholar
  58. 58.
    Hernández F. Historia de las plantas de Nueva España. Tomo 1 (libros 1o y 2o). México, DF: Imprenta Universitaria; 1615.Google Scholar
  59. 59.
    Nabhan GP, Berry JW, Weber CW. Wild beans of the Greater Southwest: Phaseolus metcalfei and P. ritensis. Econ Bot. 1980;34(1):68–85.CrossRefGoogle Scholar
  60. 60.
    Moerman DE. Native American ethnobotany. Portland: Timber Press; 1998.Google Scholar
  61. 61.
    Nabhan GP. Gathering the desert. Tucson: The University of Arizona Press; 1985.Google Scholar
  62. 62.
    Felger RS, Wilder BT, Romero-Morales H. Plant life of a desert archipelago. Tucson: The University of Arizona Press; 2012.Google Scholar
  63. 63.
    Brücher H. Argentinien—Urheimat unserer bohnen. Umsch Wiss Tech. 1954;54(1):14–5.Google Scholar
  64. 64.
    Chacón-Sánchez MI, Pickersgill B, Debouck DG. Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet. 2005;110(3):432–44.CrossRefGoogle Scholar
  65. 65.
    Singh SP, Gepts P, Debouck DG. Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot. 1991;45(3):379–96.CrossRefGoogle Scholar
  66. 66.
    Léotard G, Duputié A, Kjellberg F, Douzery EJP, Debain C, de Grandville JJ, McKey D. Phylogeography and the origin of cassava: new insights from the northern rim of the Amazonian basin. Mol Phylogenet Evol. 2009;53(1):329–34.PubMedCrossRefGoogle Scholar
  67. 67.
    Olsen KM, Schaal BA. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am J Bot. 2001;88(1):131–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Sheets P, Lentz D, Piperno D, Jones J, Dixon C, Maloof G, Hood A. Ancient manioc agriculture south of the Cerén village, El Salvador. Lat Am Antiq. 2012;23(3):259–81.CrossRefGoogle Scholar
  69. 69.
    Blanca J, Cañizares J, Cordero L, Pascual L, Diez MJ, Nuez F. Variation revealed by SNP genotyping and morphology provides into the origin of the tomato. PLoS One. 2012;7(10):e48198.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Matsuoka Y, Vigouroux Y, Goodman MM, Sánchez J, Buckler E, Doebley J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci. 2002;99(9):6080–4.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Doebley JF, Wendel JD, Smith JSC, Stuber CW, Goodman MM. The origin of cornbelt maize: the isozyme evidence. Econ Bot. 1988;42(1):120–31.CrossRefGoogle Scholar
  72. 72.
    Galinat WC. Maize: gift from America’s first peoples. In: Foster N, Cordell LS, editors. Chillies to chocolate—food the Americas gave the world. Tucson: The University of Arizona Press; 1992.Google Scholar
  73. 73.
    Cardich A. The fluctuating upper limits of cultivation in the Central Andes and their impact on Peruvian prehistory. Adv World Archaeol. 1985;4:293–333.Google Scholar
  74. 74.
    Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa R. Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl. 2009;2:504–22.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Serrano-Serrano ML, Andueza-Noh R, Martínez-Castillo GJ, Debouck DG, Chacón-Sánchez MI. Evolution and domestication of Lima bean (Phaseolus lunatus L.) in Mexico: evidence from ribosomal DNA. Crop Sci. 2012;52(4):1698–712.CrossRefGoogle Scholar
  76. 76.
    Buckler ES, Pearsall DM, Holtsford TP. Climate, plant ecology, and Central Mexican Archaic subsistence. Curr Anthropol. 1998;39(1):152–64.CrossRefGoogle Scholar
  77. 77.
    Graham A. Late Cretaceous and Cenozoic history of Latin American vegetation and terrestrial environments. St. Louis: Missouri Botanical Garden Press; 2010.Google Scholar
  78. 78.
    Andueza-Noh RH, Serrano-Serrano ML, Chacón-Sánchez MI, SánchezdelPino I, Camacho-Pérez L, Coello-Coello J, Mijangos-Cortés J, Debouck DG, Martínez-Castillo J. Multiple domestications of the Mesoamerican gene pool of Lima bean (Phaseolus lunatus L.): evidence from chloroplast DNA sequences. Genet Resour Crop Evol. 2013;60(3):1069–86.CrossRefGoogle Scholar
  79. 79.
    Kwak M, Kami JA, Gepts P. The putative Mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma-Santiago basin of Mexico. Crop Sci. 2009;49(2):554–63.CrossRefGoogle Scholar
  80. 80.
    Tohme J, Toro-Chica O, Vargas J, Debouck DG. Variability in Andean Nuña common bean (Phaseolus vulgaris, Fabaceae). Econ Bot. 1995;49(1):78–95.CrossRefGoogle Scholar
  81. 81.
    Papa R, Gepts P. Asymmetry of gene flow and differential geographic structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet. 2003;106(2):239–50.PubMedGoogle Scholar
  82. 82.
    Beebe SE, Toro-Chica O, González AV, Chacón-Sánchez MI, Debouck DG. Wild-weed-crop complexes of common bean (Phaseolus vulgaris L., Fabaceae) in the Andes of Peru and Colombia, and their implications for conservation and breeding. Genet Resour Crop Evol. 1997;44(1):73–91.CrossRefGoogle Scholar
  83. 83.
    Mamidi S, Rossi M, Annam D, Moghaddam S, Lee R, Papa R, McClean P. Investigation of the domestication of common bean (Phaseolus vulgaris) using multilocus sequence data. Funct Plant Biol. 2011;38(12):953–67.CrossRefGoogle Scholar
  84. 84.
    Piperno DL, Moreno JE, Iriarte J, Holst I, Lachniet M, Jones JG, Ranere AJ, Castanzo R. Late Pleistocene and Holocene environmental history of the Iguala valley, central Balsas watershed of Mexico. Proc Natl Acad Sci U S A. 2007;104(29):11874–81.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Piperno DL, Ranere AJ, Holst I, Iriarte J, Dickau R. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas river valley, Mexico. Proc Natl Acad Sci U S A. 2009;106(13):5019–24.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Cohen MN. Archaeological plant remains from the central coast of Peru. Nawpa Pacha. 1978;16:23–50.CrossRefGoogle Scholar
  87. 87.
    Mangelsdorf PC, Galinat WC. Prehistoric wild and cultivated maize. In: Byers DS, editor. The prehistory of the Tehuacan Valley, Environment and subsistence, vol. 1. Austin: University of Texas Press; 1967.Google Scholar
  88. 88.
    Smith BD. Documenting plant domestication: the consilience of biological and archaeological approaches. Proc Natl Acad Sci U S A. 2001;98(4):1324–6.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Pratt RC, Nabhan GP. Evolution and diversity of Phaseolus acutifolius genetic resources. In: Gepts P, editor. Genetic resources of Phaseolus beans. Dordrecht: Kluwer Academic; 1988.Google Scholar
  90. 90.
    Debouck DG. Genetic resources of Phaseolus beans: patterns in time, space, and people. In: Fueyo MA, González AJ, Ferreira JJ, Giraldez R, editors. La judía en un nuevo marco de calidad. 2nd Seminario de Judía de la Península Ibérica. Asturias: Asturgraf, Villaviciosa; 2000.Google Scholar
  91. 91.
    Kaplan L, Kaplan LN. Phaseolus in archaeology. In: Gepts P, editor. Genetic resources of Phaseolus beans. Dordrecht: Kluwer Academic; 1988.Google Scholar
  92. 92.
    Bozarth S. Morphologically distinctive Phaseolus, Cucurbita, and Helianthus annuus phytoliths. In: Rovner I, editor. Plant opal phytolith analysis in archaeology and palaeoecology. Proceedings 1984 phytolith research workshop. Raleigh: North Carolina State University; 1986.Google Scholar
  93. 93.
    Piperno DL. New archaeobotanical information on early cultivation and plant domestication involving microplant (phytolith and starch grain) remains. In: Gepts P, Famula TR, Bettinger RL, Brush SB, Damania AB, McGuire PE, Qualset CO, editors. Biodiversity in agriculture—domestication, evolution, and sustainability. Cambridge: Cambridge University Press; 2012.Google Scholar
  94. 94.
    Grobman A, Bonavia D. Pre-ceramic maize on the north-central coast of Peru. Nature. 1978;276(5686):386–7.CrossRefGoogle Scholar
  95. 95.
    Kaplan L. Archaeological Phaseolus from Tehuacan. In: Byers DS, editor. The prehistory of the Tehuacan valley, vol. 1. Austin: University of Texas Press; 1967.Google Scholar
  96. 96.
    Kaplan L. What is the origin of the common bean. Econ Bot. 1981;35(2):240–54.CrossRefGoogle Scholar
  97. 97.
    Kaplan L. Variation in the cultivated beans. In: Lynch TF, editor. Guitarrero cave—early man in the Andes. New York: Academic; 1980.Google Scholar
  98. 98.
    Koinange EMK, Singh SP, Gepts P. Genetic control of the domestication syndrome in common bean. Crop Sci. 1996;36(4):1037–45.CrossRefGoogle Scholar
  99. 99.
    Roosevelt AC. Early pottery in the Amazon—twenty years of scholarly obscurity. In: Barnett WK, Hoopes JW, editors. The emergence of pottery—technology and innovation in ancient societies. Washington, DC: Smithsonian Institution Press; 1995.Google Scholar
  100. 100.
    Reichel-Dolmatoff G. Monsú, un sitio arqueológico. Bogotá: Biblioteca Banco Popular; 1985.Google Scholar
  101. 101.
    Clark JE, Gosser D. Reinventing Mesoamerica’s first pottery. In: Barnett WK, Hoopes JW, editors. The emergence of pottery—technology and innovation in ancient societies. Washington, DC: Smithsonian Institution Press; 1995.Google Scholar
  102. 102.
    Wrangham R, Conklin-Brittain NL. Cooking as a biological trait. Comp Biochem Physiol. 2003;136:35–46.CrossRefGoogle Scholar
  103. 103.
    Diamond J. Guns, germs, and steel: the fates of human societies. New York: W.W. Norton; 1997.Google Scholar
  104. 104.
    Robinson A. The story of writing. 2nd ed. London: Thames and Hudson Limited; 2007.Google Scholar
  105. 105.
    Seigler DS, Maslin BR, Conn EE. Cyanogenesis in the Leguminosae. In: Stirton CH, Zarucchi JL, editors. Advances in legume biology, Monogr Syst Bot Missouri Bot Gard, vol. 29. 1989. p. 645–72.Google Scholar
  106. 106.
    Van der Poel AFB. Effect of processing on antinutritional factors and protein nutritional value of dry beans (Phaseolus vulgaris L.). A review. Anim Feed Sci Technol. 1990;29(3–4):179–208.CrossRefGoogle Scholar
  107. 107.
    Lioi L, Galasso I, Daminati MG, Piergiovanni AR. Inhibitory properties and binding loop polymorphism in Bowman-Birk inhibitors from Phaseolus species. Genet Resour Crop Evol. 2010;57(4):533–42.CrossRefGoogle Scholar
  108. 108.
    Pueyo JJ, Delgado-Salinas A. Presence of α-amylase inhibitor in some members of the subtribe Phaseolinae (Phaseoleae: Fabaceae). Am J Bot. 1997;84(1):79–84.Google Scholar
  109. 109.
    Espinosa-Alonso LG, Lygin A, Widholm JM, Valverde ME, Paredes-López O. Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.). J Agric Food Chem. 2006;54(12):4436–44.PubMedCrossRefGoogle Scholar
  110. 110.
    Wilson EO. The diversity of life. New York: W.W. Norton; 1992.Google Scholar
  111. 111.
    Diamond J. The local origins of domestication. In: Gepts P, Famula TR, Bettinger RL, Brush SB, Damania AB, McGuire PE, Qualset CO, editors. Biodiversity in agriculture—domestication, evolution, and sustainability. Cambridge: Cambridge University Press; 2012.Google Scholar
  112. 112.
    Lipp FJ. The Mixe of Oaxaca: religion, ritual and healing. Austin: University of Texas Press; 1998.Google Scholar
  113. 113.
    Breedlove DE, Laughlin RM. The flowering of man—a Tzotzil botany of Zinacatán. Smithson Contrib Anthropol. 1993;35:1–706.Google Scholar
  114. 114.
    Wells S. Pandora’s seed: the unforeseen cost of civilization. New York: Random House; 2010.Google Scholar
  115. 115.
    Debouck DG. Cahiers de phaséologie: section Chiapasana. Cali: International Center for Tropical Agriculture (CIAT); 2013. http://www.ciat.cgiar.org/urg. Accessed 22 Dec 2013.
  116. 116.
    Anderson E. Plants, man and life. Boston: Little Brown and Co.; 1952.Google Scholar
  117. 117.
    De Wet JMJ, Harlan JR. Weeds and domesticates: evolution in the man-made habitat. Econ Bot. 1975;29(2):99–107.CrossRefGoogle Scholar
  118. 118.
    Hawkes JG. The ecological background of plant domestication. In: Ucko PJ, Dimbleby GW, editors. The domestication and exploitation of plants and animals. London: Duckworth & Co.; 1969.Google Scholar
  119. 119.
    Johns T. With bitter herbs they shall eat it—chemical ecology and the origins of human diet and medicine. Tucson: The University of Arizona Press; 1990.Google Scholar
  120. 120.
    Mirkov TE, Wahlstrom JM, Hagiwara K, Finardi F, Kjemtrup S, Chrispeels MJ. Evolutionary relationships among proteins in the phytohemagglutinin-arcelin-α-amylase inhibitor family of the common bean and its relatives. Plant Mol Biol. 1994;26(4):1103–13.PubMedCrossRefGoogle Scholar
  121. 121.
    Debouck DG. Biodiversity, ecology and genetic resources of Phaseolus beans—seven answered and unanswered questions. In: Oono K, editor. Wild legumes. Tsukuba: Ministry of Agriculture, Forestry and Fisheries, and National Institute of Agrobiological Resources; 2000.Google Scholar
  122. 122.
    Frehner M, Scalet M, Conn EE. Pattern of the cyanide-potential in developing fruits: implications for plants accumulating cyanogenic monoglucosides (Phaseolus lunatus) or cyanogenic diglucosides in their seeds (Linum usitatissimum, Prunus amygdalus). Plant Physiol. 1990;94(1):28–34.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Martin FW, Waszczenko-Zacharczenko E, Boyd WC, Schertz KF. Lectin content of the Lima bean during development of the seed and seedling. Ann Bot. 1964;28(110):319–24.CrossRefGoogle Scholar
  124. 124.
    Debouck DG, Toro O, Paredes OM, Johnson WC, Gepts P. Genetic diversity and ecological distribution of Phaseolus vulgaris (Fabaceae) in northwestern South America. Econ Bot. 1993;47(4):408–23.CrossRefGoogle Scholar
  125. 125.
    Vela E. La calabaza, el tomate y el frijol. Arqueol Mex. 2010;36:7–90.Google Scholar
  126. 126.
    Iltis HH. Homeotic sexual translocations and the origin of maize (Zea mays, Poaceae): a new look at an old problem. Econ Bot. 2000;54(1):7–42.CrossRefGoogle Scholar
  127. 127.
    Wrangham R, Carmondy R. Human adaptation to the control of fire. Evol Anthropol. 2010;19:187–99.CrossRefGoogle Scholar
  128. 128.
    Kaplan L, McNeish RS. Prehistoric bean remains from caves in the Ocampo region of Tamaulipas, Mexico. Bot Mus Leafl Harv Univ. 1960;19(2):33–56.Google Scholar
  129. 129.
    Anderson E. Maíz reventador. Ann Mo Bot Gard. 1944;31(4):301–15.CrossRefGoogle Scholar
  130. 130.
    Zizumbo-Villareal D, Flores-Silva A, Colunga-GarcíaMarín P. The food system during the formative period in west Mesoamerica. Econ Bot. 2014;68(1):67–84.CrossRefGoogle Scholar
  131. 131.
    Wellhausen EJ, Roberts LM, Hernández-Xolocotzi E. Races of maize in Mexico. Their origin, characteristics and distribution. Cambridge, MA: Bussey Institution, Harvard University; 1952.Google Scholar
  132. 132.
    Roberts LM, Grant UJ, Ramírez R, Hatheway WH, Smith DL, Mangelsdorf PC. Races of maize in Colombia. Washington, DC: National Academy of Sciences, National Research Council; 1957.Google Scholar
  133. 133.
    Grobman A, Salhuana W, Sevilla R, Mangelsdorf PC. Races of maize in Peru: their origins, evolution and classification. Washington, DC: National Academy of Sciences, National Research Council; 1961.Google Scholar
  134. 134.
    Ramírez ER, Timothy DH, Díaz E, Grant UJ. Races of maize in Bolivia. Washington, DC: National Academy of Sciences, National Research Council; 1960.Google Scholar
  135. 135.
    Freyre R, Ríos R, Guzmán L, Debouck DG, Gepts P. Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Econ Bot. 1996;50(2):195–215.CrossRefGoogle Scholar
  136. 136.
    Cámara-Hernández J. Arancibia de Cabezas D. Maices andinos y sus usos en la Quebrada de Humahuaca y regiones vecinas (Argentina). Buenos Aires: Editorial Facultad de Agronomía, Universidad de Buenos Aires; 2007.Google Scholar
  137. 137.
    Kaplan L. The cultivated beans of the prehistoric Southwest. Ann Mo Bot Gard. 1956;43:189–251.CrossRefGoogle Scholar
  138. 138.
    Zizumbo-Villareal D, Flores-Silva A, Colunga-GarcíaMarín P. The archaic diet in Mesoamerica: incentive for milpa development and species domestication. Econ Bot. 2012;66(4):328–43.CrossRefGoogle Scholar
  139. 139.
    Kaplan L. Archaeology and domestication in American Phaseolus (beans). Econ Bot. 1965;19(4):358–68.CrossRefGoogle Scholar
  140. 140.
    National Research Council. Amaranth: modern prospects for an ancient crop. Washington, DC: National Academy Press; 1984.Google Scholar
  141. 141.
    Sauer JD. The grain amaranths: a survey of their history and classification. Ann Mo Bot Gard. 1950;37:561–619.CrossRefGoogle Scholar
  142. 142.
    Ortiz de Montellano BR. Aztec medicine, health, and nutrition. New Brunswick: Rutgers University Press; 1990.Google Scholar
  143. 143.
    McNeill WH. Plagues and peoples. New York: Anchor Books Editions; 1998.Google Scholar
  144. 144.
    Ott C. Pumpkin: the curious history of an American icon. Seattle: University of Washington Press; 2012.Google Scholar
  145. 145.
    Wilhelm de Mosbach E. Botánica indígena de Chile. Santiago: Editorial Andrés Bello; 1992.Google Scholar
  146. 146.
    Kaplan L, Kaplan LN. Beans of the Americas. In: Foster N, Cordell LS, editors. Chillies to chocolate—food the Americas gave the world. Tucson: The University of Arizona Press; 1992.Google Scholar
  147. 147.
    Summer J. American household botany: a history of useful plants, 1620–1900. Portland: Timber Press; 2004.Google Scholar
  148. 148.
    Debouck DG. Frijoles, Phaseolus spp. In: Hernández E, León J, editors. Cultivos marginados: otra perspectiva de 1492. Rome: Food and Agriculture Organization of the United Nations; 1992.Google Scholar
  149. 149.
    McBryde FW. Cultural and historical geography of southwest Guatemala. Smithsonian Inst Public Soc Anthropol. 1947;4:1–184.Google Scholar
  150. 150.
    Delgado-Salinas A. Variation, taxonomy, domestication, and germplasm potentialities in Phaseolus coccineus. In: Gepts P, editor. Genetic resources of Phaseolus beans. Dordrecht: Kluwer Academic; 1988.Google Scholar
  151. 151.
    Miranda-Colín S. Origen de Phaseolus vulgaris L. (frijol común). Agrociencia. 1967;1(2):99–109.Google Scholar
  152. 152.
    Diamond J. Evolution, consequences and future of plant and animal domestication. Nature. 2002;418:700–7.PubMedCrossRefGoogle Scholar
  153. 153.
    Root WC. Metallurgy. In: Steward JH, editor. Handbook of South American Indians. Vo. 5. The comparative ethnology of South American Indians. New York: Cooper Square Publishers, Inc.; 1963.Google Scholar
  154. 154.
    Poma de Ayala FG. Las ilustraciones de Guamán Poma. 2nd ed. Lima: Editorial Comentarios; 1615/2003.Google Scholar
  155. 155.
    Khairallah MM, Sears BB, Adams MW. Mitochondrial restriction fragment length polymorphisms in wild Phaseolus vulgaris L.: insights on the domestication of the common bean. Theor Appl Genet. 1992;84(7–8):915–22.PubMedGoogle Scholar
  156. 156.
    McClean PE, Terpstra J, McConnell M, White C, Lee R, Mamidi S. Population structure and genetic differentiation among the USDA common bean (Phaseolus vulgaris L.) core collection. Genet. Genet Resour Crop Evol. 2012;59(4):499–515.CrossRefGoogle Scholar
  157. 157.
    Motta-Aldana JR, Serrano-Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG, Chacón-Sánchez MI. Multiple origins of Lima bean landraces in the Americas: evidence from chloroplast and nuclear DNA polymorphisms. Crop Sci. 2010;50(5):1773–87.CrossRefGoogle Scholar
  158. 158.
    Crosby AW. The Columbian exchange—biological and cultural consequences of 1492. Westport: Praeger; 2003.Google Scholar
  159. 159.
    Jennings PR, Cock JH. Centres of origin of crops and their productivity. Econ Bot. 1977;31(1):51–4.CrossRefGoogle Scholar
  160. 160.
    Safford WE. Food plants and textiles of ancient America. In: Proceeding 2nd Pan American Scientific Congress I. Anthropology, vol. 1; 1917. p. 146–59.Google Scholar
  161. 161.
    Andrews J. Peppers: the domesticated capsicums. Austin: University of Texas Press; 1995.Google Scholar
  162. 162.
    Merrill ED. The botany of Cook’s voyages. Chron Bot. 1954;14(5–6):161–384.Google Scholar
  163. 163.
    Singh SP. Production and utilization. In: Singh SP, editor. Common bean improvement in the twenty-first century. Dordrecht: Kluwer Academic; 1999.CrossRefGoogle Scholar
  164. 164.
    Pollan M. The omnivore’s dilemma: a natural history of four meals. New York: Penguin; 2006.Google Scholar
  165. 165.
    Diamond J. Collapse: how societies choose to fail or succeed. New York: Viking Penguin; 2005.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.International Center for Tropical Agriculture (CIAT)CaliColombia

Personalised recommendations