Advertisement

Modeling Complex Concepts with Type-2 Fuzzy Sets: The Case of User Satisfaction of Online Services

  • Masoomeh Moharrer
  • Hooman Tahayori
  • Alireza Sadeghian
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 301)

Abstract

Specific characteristics of human perception, like context-dependency, imprecision, and diversity, demand capable formal frameworks for modeling the human mind. This chapter discusses a two-phase method for deriving type-2 fuzzy sets that model human perceptions of the linguistic terms used in describing online satisfaction. In the first phase, we describe the identification of the determinants of user satisfaction of online tourism services. We will demonstrate how the decomposition of the satisfaction concept into a set of simpler, albeit covering subconcepts, would be used to calculate a type-1 fuzzy set model of an individual’s perception. In the second phase, type-2 fuzzy sets modeling online user satisfaction are derived based on the obtained type-1 fuzzy sets. The construction of type-2 fuzzy sets is based on the exploitation of the fuzzy approach to represent uncertainty and by stacking the α-planes calculated at different levels of confidence around the estimated mean values of the type-1 fuzzy set.

Notes

Acknowledgments

The authors would like to sincerely acknowledge Professor G. Degli Antoni from Universita Degli Studi di Milano, and the staff of the Beauvais airport, Paris, without their help the data collection would not have been completed.

References

  1. 1.
    Montero, J., Ruan, D.: Modeling uncertainty. Inf. Sci. 180, 799–802 (2010)CrossRefGoogle Scholar
  2. 2.
    Pedrycz, W.: Human centricity in computing with fuzzy sets: an interpretability quest for higher order granular constructs. J. Ambient Intell Humaniz Comput 1, 65–74 (2010)CrossRefGoogle Scholar
  3. 3.
    Mendel, J.M.: Computing with words and its relationships with fuzzistics. Inf. Sci. 177, 988–1006 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Mendel, J.M.: Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall, Upper Saddle River (2001)MATHGoogle Scholar
  5. 5.
    Liu, F., Mendel, J.M.: Encoding words into interval type-2 fuzzy sets using an interval approach. IEEE Trans. Fuzzy Syst. 16(6), 1503–1521 (2008)CrossRefGoogle Scholar
  6. 6.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-1. Inf. Sci. 8, 199–249 (1975)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Mendel JM (2003) Fuzzy sets for words: a new beginning. Proc FUZZ-IEEE 37–42, St. Louis, MOGoogle Scholar
  8. 8.
    Tahayori H, Sadeghian A (2012) Handling uncertainties of membership functions with shadowed fuzzy sets. Proceeding of World Automation Congress, pp. 1–5, Puerto Vallarta, MexicoGoogle Scholar
  9. 9.
    Tahayori H, Sadeghian A.: Shadowed fuzzy sets: a framework with more freedom degrees than interval Type-2 fuzzy sets for handling uncertainties and lower computational complexity than general Type-2 fuzzy sets. In: Balas, V.E. et al. (ed.) New Concepts and Applications in Soft Computing, SCI 417, pp. 97–117, Springer, New York (2013)Google Scholar
  10. 10.
    Tahayori H, Sadeghian A, Pedrycz W.: Induction of shadowed sets based on the Gradual Grade of Fuzziness to be published in IEEE Transactions on Fuzzy Systems, doi: 10.1109/TFUZZ.2012.2236843.
  11. 11.
    Moharrer M, Tahayori H, Sadeghian A.: Modeling linguistic label perception in tourism E-Satisfaction with Type-2 fuzzy sets. Proceeding of North American Fuzzy Information Processing Society (NAFIPS) Annual Meeting, pp. 1–6, Toronto, Canada (2010)Google Scholar
  12. 12.
    Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)CrossRefGoogle Scholar
  13. 13.
    Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)CrossRefGoogle Scholar
  14. 14.
    Tahayori, H., Degli Antoni, G.: Operations on concavoconvex Type-2 fuzzy sets. Int J.Fuzzy Syst. 10(4), 276–286 (2008)MathSciNetGoogle Scholar
  15. 15.
    Tahayori H, Sadeghian A, Visconti A.: Operations on Type-2 Fuzzy Sets based on the set of Pseudo-Highest intersection points of convex Fuzzy Sets. Proceeding of North American Fuzzy Information Processing Society (NAFIPS) Annual Meeting, pp. 1–6, Toronto, Canada (2010)Google Scholar
  16. 16.
    Tahayori H, Tettamanzi AGB, Degli Antoni G.: Approximated Type-2 Fuzzy Set Operations. Proceeding of IEEE World Congress on Computational Intelligence, pp. 1910–1917, Vancouver, Canada (2006) Google Scholar
  17. 17.
    Tahayori, H., Tettamanzi, A.G.B., Degli Antoni, G., Visconti, A.: On the calculation of extended Max and Min operations between convex Fuzzy Sets of the real line. Fuzzy Sets Syst. 160(21), 3103–3114 (2009)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Tahayori, H., Tettamanzi, A.G.B., Degli Antoni, G., Visconti, A., Moharrer, M.: Concave Type-2 fuzzy sets: properties and operations. Soft Comput. J. 14(7), 749–756 (2010)MATHCrossRefGoogle Scholar
  19. 19.
    Bailey, J.E., Pearson, S.W.: Development of a tool for measuring and analyzing computer user satisfaction. Manage. Sci. 29(5), 530–545 (1983)CrossRefGoogle Scholar
  20. 20.
    Szymansky, M.D., Hise, R.: E-satisfaction: an initial examination. J. Retail. 76(3), 309–322 (2000)CrossRefGoogle Scholar
  21. 21.
    Akama, J.S., Kieti, D.M.: Measuring tourist satisfaction with Kenya’s safari. Tourism Manag. 24, 73–81 (2002)CrossRefGoogle Scholar
  22. 22.
    Evanschitzky, H., Gopalkrishnan, R.I., Hesse, J., Ahlert, D.: E-satisfaction: a re-examination. J. Retail. 80, 239–247 (2004)CrossRefGoogle Scholar
  23. 23.
    Kaiser, H.F.: An index of factorial simplicity. Pschometrika 39, 31–36 (1974)MATHCrossRefGoogle Scholar
  24. 24.
    Bartlett, MS.: (1937) Properties of sufficiency and statistical tests. Royal Stat. Soc. Ser. A 160, 268–282Google Scholar
  25. 25.
    Cronbach, L.J., Shavelson, R.J.: My current thoughts on coefficient alpha and successor procedures. Educ. Psychol. Measur. 64(3), 391–418 (2004)CrossRefGoogle Scholar
  26. 26.
    Nunnally, J.C.: Psychometric theory. McGraw-Hill, New York (1967)Google Scholar
  27. 27.
    Moharrer M, Tahayori H.: Clustering E-satisfaction factors in tourism industry. Proceeding of International Conference Information Society, pp. 182–185, Merrillville Indiana, USA (2007)Google Scholar
  28. 28.
    Moharrer M, Tahayori H.: Drivers of customer convenience in electronic tourism industry. Proceeding of IEEE 20th Canadian Conference on Electrical and Computer Engineering, pp. 836–839, Vancouver, Canada (2007)Google Scholar
  29. 29.
    Moharrer M, Tahayori H, Albadvi A, Zegordi SH, Perzon H.: Satisfaction in E-Tourism, a case of European Online Customers. Proceeding of IADIS e-Commerce Conference, pp. 303–307, Barcelona, Spain (2006)Google Scholar
  30. 30.
    Moharrer M, Zegordi SH, Tahayori H.: Drivers of customer satisfaction in Electronic Tourism Industry. Proceeding of 24th EuroCHRIE Congress, Thessaloniki, Greece (2006)Google Scholar
  31. 31.
    Turksen, I.B.: Type 2 representation and reasoning for CWW. Fuzzy Sets Syst. 127(1), 17–36 (2002)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Turksen, I.B., Willson, I.A.: A fuzzy set preference model for consumer choice. Fuzzy Sets Syst. 68, 253–266 (1994)CrossRefGoogle Scholar
  33. 33.
    Mencar, C., Fanelli, A.M.: Interpretability constraints for fuzzy information granulation. Inf. Sci. 178(24), 4585–4618 (2008)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transformations, triangular Fuzzy sets, and probabilistic inequalities. Reliable Comput. 10, 273–297 (2004)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Mauris, G., Lasserre, V., Foulloy, L.: A fuzzy approach for the expression of uncertainty in measurement. Measurement 29, 165–177 (2001)CrossRefGoogle Scholar
  36. 36.
    Mendel, J.M., Liu, F., Zhai, D.: α-Plane representation for Type-2 fuzzy sets: theory and applications. IEEE Trans. Fuzzy Syst. 17(5), 1189–1207 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Masoomeh Moharrer
    • 1
  • Hooman Tahayori
    • 1
  • Alireza Sadeghian
    • 1
  1. 1.Department of Computer ScienceRyerson UniversityTorontoCanada

Personalised recommendations