Advertisement

A Review of Cluster Validation with an Example of Type-2 Fuzzy Application in R

  • Ibrahim Ozkan
  • I. Burhan Türkşen
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 301)

Abstract

Interval valued type-2 fuzziness can be represented by means of membership functions obtained with upper and lower values of the level of fuzziness. These upper and lower values for the level of fuzziness in FCM algorithm were obtained in our previous studies. A particular application of Interval valued type-2 fuzziness is shown for cluster validity analysis in this chapter. For this purpose, we introduce a brief taxonomy for cluster validity indices to clarify the contribution of our novel approach. To provide reproducibility of our technique, the source code is written in freely available language ‘R’ and can be found on our web site.

Keywords

Cluster validity Internal criteria External criteria Relative criteria Stability type Biological type Compactness Connectedness Separation MiniMax ε-stable Partition coefficient Partition entropy Fukuyama-Sugeno Xie-Beni Dissimilarity Euclidian Manhattan Fuzzy c-mean Iris data R code Type 2 fuzzy Interval valued type-2 fuzzy Membership Upper and lower values of fuzziness Wine data 

Notes

Acknowledgments

This work was partially supported by the Natural Science and Engineering Research Council (NSERC) Grant (RPGIN 7698-05) to University of Toronto. Also, partial support is provided by Hacettepe University and TOBB Economics and Technology University. Their support is greatly appreciated.

References

  1. 1.
    Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustered data. In: Pacific Symposium on Biocomputing, vol. 7, pp. 6–17. World Scientific Publishing Co., New Jersey (2002)Google Scholar
  2. 2.
    Ben-Hur, A., Guyon, I.: Detecting stable clusters using principal component analysis. In: Brownstein, M.J., Kohodursky, A. (eds.) Methods in Molecular Biology, pp. 159–182 Humana Press, Clifton, (2003)Google Scholar
  3. 3.
    Bezdek, JC.: Fuzzy mathematics in pattern classification. Dissertation, Applied Mathematics Center, Cornell University, Ithaca, (1973)Google Scholar
  4. 4.
    Bezdek, J.C.: Cluster validity with fuzzy sets. J. Cybernet. 3, 58–72 (1974)MathSciNetGoogle Scholar
  5. 5.
    Bezdek, JC.: Mathematical models for systematics and taxonomy. In: Estabrook, G. (ed.) Proceeding of 8th International Conference on Numerical Taxonomy, pp. 143–166. Freeman, San Francisco (1975)Google Scholar
  6. 6.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)MATHCrossRefGoogle Scholar
  7. 7.
    Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression data. Sig. Process 83, 825–833 (2003)MATHCrossRefGoogle Scholar
  8. 8.
    Bolshakova, N., Azuaje, F., Cunningham, P.: A knowledge-driven approach to cluster validity assessment. Bioinformatics 21, 2546–2547 (2005)CrossRefGoogle Scholar
  9. 9.
    Boudraa, A.O.: Dynamic estimation of number of clusters in data set. Electron. Lett. 35, 1606–1608 (1999)Google Scholar
  10. 10.
    Bouguessa, M., Wang, S., Sun, H.: An objective approach to cluster validation. Pattern Recogn. Lett. 27, 1419–1430 (2006)CrossRefGoogle Scholar
  11. 11.
    Breckenridge, J.: Replicating cluster analysis: method, consistency and validity. Multivar. Behav. Res. 24, 147–161 (1989)CrossRefGoogle Scholar
  12. 12.
    Brock, G.N., Pihur, V., Datta, S., Datta, S.: clValid: an R package for cluster validation. J. Stat. Softw. 251, 22 (2008). http://www.jstatsoft.org/v25/i04 Google Scholar
  13. 13.
    Celikyilmaz, A., Türksen, I.B.: Enhanced fuzzy system models with improved fuzzy clustering algorithm. IEEE Trans. Fuzzy Syst. 16, 779–794 (2008)CrossRefGoogle Scholar
  14. 14.
    Celikyilmaz, A., Türksen, I.B.: Validation criteria for enhanced fuzzy clustering. Pattern Recogn. Lett. 29, 97–108 (2008)CrossRefGoogle Scholar
  15. 15.
    Chen, M.Y., Linkens, A.: Rule-base self-generation and simplification for data-driven fuzzy models. J. Fuzzy Sets Syst. 142, 243–265 (2004)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)CrossRefGoogle Scholar
  17. 17.
    Dudoit, S., Fridlyand, J.: A prediction based re-sampling method for estimating the number of clusters in a data set. Genome Biol. 3, 1–21 (2002)CrossRefGoogle Scholar
  18. 18.
    Dunn, J.C.: Well separated clusters and fuzzy partitions. J. Cybern. 4(1974), 95–104 (1974)MathSciNetGoogle Scholar
  19. 19.
    Falasconi, M., Gutierrez, A., Pardo, M., Sberveglieri, G., Marco, S.: A stability based validity method for fuzzy clustering. Pattern Recogn. 43, 1292–1305 (2010)MATHCrossRefGoogle Scholar
  20. 20.
    Fukuyama, Y., Sugeno, M.: A new method of choosing the number of clusters for the fuzzy c-means method. In: Proceedings of Fifth Fuzzy Systems Symposium, pp. 247–250 (in Japanese) (1989)Google Scholar
  21. 21.
    Gan, G., Chaoqun, M., Jianhong, W.: Data Clustering: Theory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia, ASA, Alexandria (2007)Google Scholar
  22. 22.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering validity methods part I. ACM SIGMOD Rec. 31, 40–45 (2002)CrossRefGoogle Scholar
  23. 23.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering validity methods part II. ACM SIGMOD Rec. 31, 19–27 (2002)CrossRefGoogle Scholar
  24. 24.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. Intell. Inf. Syst. J. 17, 107–145 (2001). Kluwer PulishersMATHCrossRefGoogle Scholar
  25. 25.
    Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21, 3201–3212 (2005)CrossRefGoogle Scholar
  26. 26.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)MATHGoogle Scholar
  27. 27.
    Kim, D.W., Lee, K.H., Lee, D.: On cluster validity index for estimation of the optimal number of fuzzy clusters. Pattern Recogn. 37, 2009–2025 (2004)CrossRefGoogle Scholar
  28. 28.
    Kwon, S.K.: Cluster validity index for fuzzy clustering. Electron. Lett. 34, 2176–2177 (1998)CrossRefGoogle Scholar
  29. 29.
    Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability based validation of clustering solutions. Neural Comput. 16, 1299–1323 (2004)MATHCrossRefGoogle Scholar
  30. 30.
    Levine, E., Domany, E.: Resampling method for unsupervised estimation of cluster validity. Neural Comput. 13, 2573–2593 (2001)MATHCrossRefGoogle Scholar
  31. 31.
    Mufti, G.B., Bertrand, P., El Moubarki, L.: Determining the number of groups from measures of cluster validity. In: Proceedings of ASMDA2005, pp. 404–414 (2005)Google Scholar
  32. 32.
    Ozkan, I., Türksen, I.B.: Entropy assessment of type-2 fuzziness. IEEE Int. Conf. Fuzzy Syst. 2, 1111–1115 (2004)Google Scholar
  33. 33.
    Ozkan, I., Turksen, I.B.: Upper and lower values for the level of fuzziness in FCM. Inf. Sci. 177, 5143–5152 (2007)MATHCrossRefGoogle Scholar
  34. 34.
    Ozkan, I., Turksen, I.B.: MiniMax ɛ-stable cluster validity index for type-2 fuzziness. Inf. Sci. 184, 64–74 (2007)CrossRefGoogle Scholar
  35. 35.
    Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3, 370–379 (1995)CrossRefGoogle Scholar
  36. 36.
    Pascual, D., Pla, F., Sánchez, J.S.: Cluster validation using information stability measures. Pattern Recogn. Lett. 31, 454–461 (2010)CrossRefGoogle Scholar
  37. 37.
    Rezaee, M.R., Lelieveldt, B.P.F., Reiber, J.H.C.: A new cluster validity index for the fuzzy c-means. Pattern Recogn. Lett. 19, 237–246 (1998)MATHCrossRefGoogle Scholar
  38. 38.
    Salem, S.A., Nandi, A.K.: Development of assessment criteria for clustering algorithms. Pattern Anal. Appl. 12, 79–98 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Shannon, C.E.: The mathematical theory of communication. Bell Syst. Tech. J. 27,379–423 and 27, 623–656 (in two parts) (1948)Google Scholar
  40. 40.
    Sugar, C., James, G.: Finding the number of clusters in a data set: an information theoretic approach. J. Am. Stat. Assoc. 98, 750–763 (2003)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Sugar, C., Lenert, L., Olshen, R.: An application of cluster analysis to health services research: empirically defined health states for depression from the sf-12. Technical Report, Stanford University, Stanford (1999) Google Scholar
  42. 42.
    Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. B Part 2, 63, 411–423 (2001)Google Scholar
  43. 43.
    Tibshirani, R., Walther, G.: Cluster validation by prediction strength. J. Comput. Graph. Stat. 14, 511–528 (2005)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Volkovich, Z., Barzily, Z., Morozensky, L.: A statistical model of cluster stability. Pattern Recogn. 41, 2174–2188 (2008)MATHCrossRefGoogle Scholar
  45. 45.
    Wang, W., Zhang, Y.: On fuzzy cluster validity indices. Fuzzy Sets Syst. 158, 2095–2117 (2007)MATHCrossRefGoogle Scholar
  46. 46.
    Wu, K.L., Yang, M.S., Hsieh, J.N.: Robust cluster validity indexes. Pattern Recogn. 42, 2541–2550 (2009)MATHCrossRefGoogle Scholar
  47. 47.
    Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13, 841–847 (1991)CrossRefGoogle Scholar
  48. 48.
    Yu, J., Cheng, Q., Huang, H.: Analysis of the weighting exponent in the FCM. IEEE Trans. Syst. Man Cybern. B 34, 634–639 (2004)CrossRefGoogle Scholar
  49. 49.
    Zhang, Y., Wang, W., Zhang, X., Li, Y.: A cluster validity index for fuzzy clustering. Inf. Sci. 178, 1205–1218 (2008)MATHCrossRefGoogle Scholar
  50. 50.
    Yue, S., Wang, J.S., Wu, T., Wang, H.: A new separation measure for improving the effectiveness of validity indices. Inf. Sci. 180, 748–764 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of EconomicsHacettepe UniversityAnkaraTurkey
  2. 2.TOBB ETUAnkaraTurkey
  3. 3.Department of Mechanical and Industrial EngineeringUniversity of TorontoOntarioCanada

Personalised recommendations