Reliable Tool Life Estimation with Multiple Acoustic Emission Signal Feature Selection and Integration Based on Type-2 Fuzzy Logic

  • Qun Ren
  • Luc Baron
  • Marek Balazinski
  • Krzysztof Jemielniak
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 301)


Reliable tool life estimation of cutting tool in micromilling is essential for planning machining operations for maximum productivity and quality. This chapter presents type-2 fuzzy tool life estimation system. In this system, type-2 fuzzy analysis is used as not only a powerful tool to model acoustic emission signal features, but also a great estimator for the ambiguities and uncertainties associated with them. Depending on the estimation of root-mean-square-error and variations in modeling results of all signal features, reliable ones are selected and integrated to cutting tool life estimation.


Tool Life Acoustic Emission Signal Feature Micromilling Estimation Fuzzy analysis Tool wear Fuzzy set Fuzzy approach Fuzzy logic system Type-2 fuzzy logic Uncertainty Interval Approximation Integration Tool condition monitoring Subtractive clustering Variation 



The data for the experimental study described in this chapter were collected by Micromachining Laboratory at Mondragón University in Spain, in collaboration with Prof. Krzysztof Jemielniak.

The authors wish to acknowledge the anonymous reviewers for their detailed and helpful comments to the manuscript.


  1. 1.
    Tansel, I., Rodriguez, O., Trujillo, M., Paz, E., Li, W.: Micro-end-milling—I, wear and breakage. Int. J. Mach. Tools Manuf. 38, 1419–1436 (1998)CrossRefGoogle Scholar
  2. 2.
    Wang, L.H., Gao Robert, X.: Condition monitoring and control for intelligent manufacturing. Springer Series in Advanced Manufacturing, ISBN: 978-1-84628-268-3 (2006)Google Scholar
  3. 3.
    Chae, J., Park, S.S., Freiheit, T.: Investigation of micro-cutting operations. J. Mach. Tools Manuf. 46, 313–332 (2006)CrossRefGoogle Scholar
  4. 4.
    Jemielniak, K., Arrazola, P.J.: Application of AE and cutting force signals in tool condition monitoring in micro-milling. CIRP J. Manuf. Sci. Technol. 1, 97–102 (2008)CrossRefGoogle Scholar
  5. 5.
    Jemielniak, K., Bombinski, S., Aristimuno, P.X.: Tool condition monitoring in micromilling based on hierarchical integration of signal measures. CIRP Ann. Manuf. Technol. 57, 121–124 (2008)CrossRefGoogle Scholar
  6. 6.
    Ren, Q., Baron, L., Balazinski, M.: Type-2 fuzzy modeling for acoustic emission signal in precision manufacturing, Model. Simul. Eng. 2011(696947) (2011). doi: 10.1155/2011/696947Google Scholar
  7. 7.
    Ren, Q., Baron, L., Balazinski, M.: Fuzzy identification of cutting acoustic emission with extended subtractive cluster analysis. Nonlinear Dyn. 67(4), 2599–2608 (2012)CrossRefGoogle Scholar
  8. 8.
    Ren, Q., Baron, L., Jemielniak, K., Balazinski, M.: Acoustic emission signal feature analysis using type-2 fuzzy logic system. In: Proceedings of the 29th North American Fuzzy Information Processing Society Annual Conference NAFIPS 2010, pp. 1–6. Toronto, Canada (2010)Google Scholar
  9. 9.
    Tansel, I.N., Arkan, T.T., Bao, W.Y., et al.: Tool wear estimation in micro-machining. Int. J. Mach. Tools Manuf. 40, 599–608 (2000)CrossRefGoogle Scholar
  10. 10.
    Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D.: Advanced monitoring of machining operations. CIRP Ann. Manuf. Technol. 59, 717–739 (2010)CrossRefGoogle Scholar
  11. 11.
    Moriwaki, T.: Application of acoustic measurements to sensing of wear and breakage of cutting tool, bull. Jpn. Soc. Precis. Eng. 17(3) (1983)Google Scholar
  12. 12.
    Sugeno, M., Kang, G.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man. Cybern. 15(1), 116–132 (1985)MATHCrossRefGoogle Scholar
  14. 14.
    Zadeh, L.A.: The conception of a linguistic variable and its application in approximate reasoning—I. Inf. Sci. 8, 199–249 (1975)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Mizumoto, M., Tanaka, K.: Fuzzy sets of type 2 under algebraic product and algebraic sum. Fuzzy Sets Syst. 5(3), 277–290 (1981)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    John, R.I.: Type-2 fuzzy sets: an appraisal of theory and applications. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6(6), 563–576 (1998)MATHCrossRefGoogle Scholar
  17. 17.
    Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132(1–4), 195–220 (2001)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy logic Systems—Introduction on New Directions. Prentice hall PTR, Upper Saddle River (2001)Google Scholar
  19. 19.
    Liang, Q., Mendel, J.M.: An introduction to type-2 TSK fuzzy logic systems, In: Proceedings of IEEE FUZZ Conference, Seoul, Korea (1999)Google Scholar
  20. 20.
    Ren, Q., Baron, L., Balazinski, M.: (2008) High order type-2 TSK fuzzy logic system. NAFIPS 2008. New York, USA, 1–6Google Scholar
  21. 21.
    Ren, Q., Balazinski, M., Baron, L.: High order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process. Int. J. Adv. Manuf. Technol. (2012). doi: 10.1007/s00170-012-3956-z Google Scholar
  22. 22.
    Hagras, H.: Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)CrossRefGoogle Scholar
  23. 23.
    Castillo, O., Melin, P.: Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)Google Scholar
  24. 24.
    Wu, D., Tan, W.W.: A simplified type-2 fuzzy logic controller for real-time control. ISA Trans. 45(4), 503–516 (2006)CrossRefGoogle Scholar
  25. 25.
    John, R., Coupland, S.: Type-2 fuzzy logic: a historical view. IEEE Comput. Intell. Mag. 2(1), 57–62 (2007)CrossRefGoogle Scholar
  26. 26.
    Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Inf. Sci. 177(1), 84–110 (2007)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Ren, Q., Baron, L., Balazinski, M., Jemielniak K.: tool condition monitoring using the tsk fuzzy approach based on subtractive clustering method. News Frontiers in Applied Artificial Intelligence, pp. 52–56, Springer-Verlag, Berlin (2008)Google Scholar
  28. 28.
    Ren, Q., Baron, L., Balazinski, M., Jemielniak, K.: TSK fuzzy modeling for tool wear condition in turning processes: an experimental study. Eng. Appl. Artif. Intell. 24(2), 260–265 (2011)CrossRefGoogle Scholar
  29. 29.
    Jemielniak, K., Bombinski, S.: Hierarchical strategies in tool wear monitoring. J. Eng. Manuf. 223(B3), 375–382 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Qun Ren
    • 1
  • Luc Baron
    • 1
  • Marek Balazinski
    • 1
  • Krzysztof Jemielniak
    • 2
  1. 1.Mechanical Engineering Department, Polytechnique MontréalUniversity of MontrealMontréalCanada
  2. 2.Faculty of Production EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations