Type-2 Fuzzy Logic in Image Analysis and Pattern Recognition

  • Patricia Melin
  • Oscar Castillo
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 301)


Interval type-2 fuzzy systems can be of great help in image analysis and pattern recognition applications. In particular, edge detection is a process usually applied to image sets before the training phase in recognition systems. This preprocessing step helps to extract the most important shapes in an image, ignoring the homogeneous regions and remarking the real objective to classify or recognize. Many traditional and fuzzy edge detectors can be used, but it is difficult to demonstrate which ones are better before the recognition results are obtained. In this work we show experimental results, where several edge detectors were used to preprocess the same image sets. Each resulting image set was used as training data for a neural network recognition system, and the recognition rates were compared. The goal of these experiments is to find the better edge detector that can be used to improve the training data of a neural network for an image recognition system.


Interval type-2 fuzzy systems Image processing Pattern recognition Edge detection Type-2 fuzzy logic Face recognition Neural networks Fuzzy edge detectors Fuzzy sobel edge detector Rules for edge detection Benchmark image data bases Monolithic neural network Recognition rates Comparison of results Mean recognition rates Type-2 fuzzy edge detector 


  1. 1.
    Mendoza, O., Melin, P., Licea, G.: A new method for edge detection in image processing using interval type-2 fuzzy logic, IEEE international conference on granular computing (GRC 2007), Silicon Valley. Ca, U.S.A (2007)Google Scholar
  2. 2.
    Mendoza, O., Melin, P., Licea, G.: Fuzzy inference systems type-1 and type-2 for digital images edges detection. J. Eng. Lett. (International Association of Engineers, Hong Kong, China) 15 (1). (Available on line: (2007)
  3. 3.
    Mendoza, O., Melin, P., Licea, G.: Interval type-2 fuzzy logic for edges detection in digital images. Int. J. Intell. Syst. 24(11), 1115–1134, Wiley, U.S.A (2009)Google Scholar
  4. 4.
    Bustince, H., Berrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: Application to edge detection, Fuzzy Sets and Systems, Elsevier, available in: (2008)
  5. 5.
    Heath, M., Sarkar, S., Sanocki, T., Bowyer, K.W.: A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 19(12), 1338–1359 (1997)CrossRefGoogle Scholar
  6. 6.
    Hua, L., Cheng, H.D., Zhang, M.: A High Performance Edge Detector Based On Fuzzy Inference Rules, Information Sciences: An International Journal. Vol. 177, Issue 21, pp. 4768–4784. Elsevier Science Inc, New York, NY, USA, (2007)Google Scholar
  7. 7.
    Revathy, K., Lekshmi, S., Prabhakaran-Nayar, S.R.: Fractal-based fuzzy technique for detection of active regions from solar. J. Sol. Phys. 228, 43–53 (2005)CrossRefGoogle Scholar
  8. 8.
    Suzuki, K., Horiba, I., Sugie, N., Nanki, M.: Contour extraction of left ventricular cavity from digital subtraction angiograms using a neural edge detector, Systems and Computers Japan, Wiley, Japan, 55–69 (2003)Google Scholar
  9. 9.
    Yitzhaky, Y., Peli, E.: A method for objective edge detection evaluation and detector parameter selection. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1027–1033 (2003)Google Scholar
  10. 10.
    Castro, J.R., Castillo, O., Melin, P., Rodriguez-Diaz, A.: Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox: In Transactions on Computational Science Book Chapter, Vol. 4750, pp. 104–114. Springer (2008)Google Scholar
  11. 11.
    Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Prentice-Hall, U.S.A (2001)Google Scholar
  12. 12.
    Evans, A.N., Liu, X.U.: Morphological gradient approach for color edges detection. IEEE Trans. Image Process. 15(6), 1454–1463 (2006)CrossRefGoogle Scholar
  13. 13.
    Russo, F., Ramponi, G.: Edge extraction by FIRE operators Fuzzy Systems, IEEE World Congress on Computational Intelligence, pp. 249–253 (1994)Google Scholar
  14. 14.
    The ORL database of faces, AT&T Laboratories Cambridge, available at:
  15. 15.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)Google Scholar
  16. 16.
    Lee, K.C., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)Google Scholar
  17. 17.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  18. 18.
    Mendoza, O., Melin, P.: The Fuzzy Sugeno Integral As A Decision Operator in The Recognition of Images with Modular Neural Networks, Hybrid Intelligent Systems. Springer, Germany, pp. 299–310 (2007)Google Scholar
  19. 19.
    Mendoza, O., Melin, P., Licea, G.: A Hybrid Approach for Image Recognition Combining Type-2 Fuzzy Logic, Modular Neural Networks and the Sugeno Integral, Information Sciences, Vol. 179(13), pp. 2078–2101. Elsevier, U.S.A. (2007)Google Scholar
  20. 20.
    Mendoza, O., Melin, P., Licea, G.: Interval Type-2 Fuzzy Logic for Module Relevance Estimation in Sugeno Integration of Modular Neural Networks, Soft Computing for Hybrid Intelligent Systems, pp. 115–127. Springer, Germany (2008)Google Scholar
  21. 21.
    Mendoza, O., Melin, P., Licea, G.: A Hybrid Approach For Image Recognition Combining Type-2 Fuzzy Logic, Modular Neural Networks and the Sugeno Integral, Information Sciences, Vol. 179(3), pp. 2078–2101. Elsevier (2008)Google Scholar
  22. 22.
    Mendoza, O., Melin, P., Licea, G.: Interval type-2 fuzzy logic and modular neural networks for face recognition applications, Appl. Soft Comput. J. 9(4), 1377–1387 (2009)Google Scholar
  23. 23.
    Mendoza, O., Melin, P., Castillo, O., Licea, G.: Type-2 Fuzzy Logic for Improving Training Data and Response Integration in Modular Neural Networks for Image Recognition, Foundations of Fuzzy Logic and Soft Computing (LNCS), pp. 604–612. Springer, Germany (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Graduate Studies and ResearchTijuana Institute of TechnologyTijuanaMexico

Personalised recommendations