Construction of Interval Type-2 Fuzzy Sets From Fuzzy Sets: Methods and Applications

  • Miguel Pagola
  • Edurne Barrenechea
  • Javier Fernández
  • Aranzazu Jurio
  • Mikel Galar
  • Jose Antonio Sanz
  • Daniel Paternain
  • Carlos Lopez-Molina
  • Juan Cerrón
  • Humberto Bustince
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 301)

Abstract

In this chapter, we present some methods to construct interval type-2 membership functions from fuzzy membership functions and their applications in image processing, classification, and decision making. First, we review some basic concepts of interval type-2 fuzzy sets (IT2FSs). Next, we analyze three different approaches to construct IT2FSs starting from fuzzy sets and their applications in different fields.

Keywords

Interval type-2 fuzzy sets, fuzzy sets Type-2 fuzzy set, interval Membership function, FOU Uncertainty, t-norm, t-conorm Maximum, minimum Ignorance, knowledge Ignorance function Parameters Interval generators Weak ignorance function Applications Classification Matching degree, association degree Image segmentation Decision making, fuzzy preference relation Non-dominance Interval Algorithm 

Notes

Acknowledgments

This research was partially supported by grant TIN2010-15505 from the Government of Spain.

References

  1. 1.
    Aisbett, J., Rickard, J.T., Morgenthaler, D.G.: Type-2 fuzzy sets as functions on spaces. IEEE Trans. Fuzzy Syst. 18(4), 841–844 (2010)CrossRefGoogle Scholar
  2. 2.
    Barrenechea, E., Fernández, A., Herrera, F., Bustince, H.: Construction of Interval-valued fuzzy preference relations using ignorance functions. Interval-valued Non Dominance Criterion, Advances in Intelligent and Soft Computing 107, Eurofuse : Workshop on Fuzzy Models and. Knowledge-Based Systems, 243–257 (2011)Google Scholar
  3. 3.
    Bustince, H., Kacpryzk, J., Mohedano, V.: Intuitionistic fuzzy generators—application to intuitionistic fuzzy complementation. Fuzzy Sets Syst. 114, 485–504 (2000)MATHCrossRefGoogle Scholar
  4. 4.
    Bustince, H., Barrenechea, E., Pagola, M.: Image thresholding using restricted equivalence functions and maximizing the measures of similarity. Fuzzy Sets Syst. 158, 496–516 (2007)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bustince, H., Pagola, M., Barrenechea, E., Orduna, R.: Representation of uncertainty associated with the fuzzification of an image by means of interval type 2 fuzzy sets. Application to threshold computing. In Proceedings of Eurofuse Workshop: New Trends in Preference Modelling, Eurofuse, (Spain) 73–78 (2007)Google Scholar
  6. 6.
    Bustince, H., Pagola, M., Barrenechea, E., Fernandez, J., Melo-Pinto, P., Couto, P., Tizhoosh, H.R., Montero, J.: Ignorance functions. An application to the calculation of the threshold in prostate ultrasound images. Fuzzy Sets Syst. 161(1), 20–36 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J., Sanz, J.: Comment on: image thresholding using type II fuzzy sets. Importance of this method. Pattern Recognit. 43(9), 3188–3192 (2010)MATHCrossRefGoogle Scholar
  8. 8.
    Cordón, O., del Jesus, M.J., Herrera, F.: A proposal on reasoning methods in fuzzy rule-based classification systems. Int. J. Approximate. Reasoning. 20(1), 21–45 (1999)Google Scholar
  9. 9.
    Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms with Applications to Image Processing and Pattern Recognition. World Scientific, singapore (1996)Google Scholar
  10. 10.
    Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 133(2), 227–235 (2003)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Isibuchi, H., Yamamoto, T., Nakashima, T.: Hybridization of fuzzy GBML approaches for pattern classification problems. IEEE Trans. Syst. Man Cybern. B 35(2), 359–365 (2005)Google Scholar
  12. 12.
    Galar, M., Fernandez, J., Beliakov, G., Bustince, H.: Interval-Valued fuzzy sets applied to stereo matching of color Images. IEEE Trans. Image Process. 20, 1949–1961 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grattan-Guinness I.:Fuzzy membership mapped onto interval and many-valued quantities. Z. Math. Logik Grundlag. Mathe. 22, 149–160 (1976)Google Scholar
  14. 14.
    Hidalgo, D., Melin, P., Castillo, O.: An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms. Expert Syst. Appl. 39(4), 4590–4598 (2012)CrossRefGoogle Scholar
  15. 15.
    Huang, L.K., Wang, M.J.: Image thresholding by minimimizing the measure of fuzziness. Pattern recognit. 28(1), 41–51 (1995)CrossRefGoogle Scholar
  16. 16.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, New York (1995)Google Scholar
  17. 17.
    Liu, F., Mendel, J.M.: Encoding words into interval type-2 fuzzy sets using an interval approach. IEEE Trans. Fuzzy Syst. 16(6), 1503–1521 (2008)CrossRefGoogle Scholar
  18. 18.
    Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)CrossRefGoogle Scholar
  19. 19.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems. Prentice-Hall, Upper Saddle River (2001)Google Scholar
  20. 20.
    Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2. Inform. Control 31, 312–340 (1976)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Pagola, M.: Representation of uncertainty by interval-valued fuzzy sets. Application to image thresholding. Ph.D. dissertation, Departamento de Automática y Computacin, Universidad Pública de Navarra, Pamplona ( 2008)Google Scholar
  22. 22.
    Orlovsky, S.A.: Decision-making with a fuzzy preference relation. Fuzzy Sets Syst. 1(3), 155–167 (1978)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Pal, S.K., King, R.A., Hashim, A.A.: Automatic grey level thresholding through index of fuzziness and entropy. Pattern Recognit. Lett. 1(3), 141–146 (1983)CrossRefGoogle Scholar
  24. 24.
    Sambuc, R.: Function \(\Phi \)- Flous. Application a l’aide au Diagnostic en Pathologie Thyroidienne. These de Doctorat en Medicine, University of Marseille (1975)Google Scholar
  25. 25.
    Sanz, J., Fernandez, A., Bustince, H., Herrera, F.: Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning. Inf. Sci. 180, 3674–3685 (2010)CrossRefGoogle Scholar
  26. 26.
    Sanz, J., Fernandez, A., Bustince, H., Herrera, F.: A genetic tuning to improve the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets: degree of ignorance and lateral position. Int. J. Approximate Reasoning 52(6), 751–766 (2011)CrossRefGoogle Scholar
  27. 27.
    Tehami, S., Bigand, A., Colot, O.: Color image segmentation based on type-2 fuzzy sets and region merging. Lect. Notes Comput. Sci. 4678, 943–954 (2007)CrossRefGoogle Scholar
  28. 28.
    Tizhoosh, H.R.: Image thresholding using type-2 fuzzy sets. Pattern Recognit. 38, 2363–2372 (2005)MATHCrossRefGoogle Scholar
  29. 29.
    Yuksel, M.E., Borlu, M: Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logi. IEEE Trans. Fuzzy Syst. 976–982 (2009)Google Scholar
  30. 30.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8, 199–249 (1975)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Miguel Pagola
    • 1
  • Edurne Barrenechea
    • 1
  • Javier Fernández
    • 1
  • Aranzazu Jurio
    • 1
  • Mikel Galar
    • 1
  • Jose Antonio Sanz
    • 1
  • Daniel Paternain
    • 1
  • Carlos Lopez-Molina
    • 1
  • Juan Cerrón
    • 1
  • Humberto Bustince
    • 1
  1. 1.Universidad Pública de NavarraPamplonaSpain

Personalised recommendations