Interval Type-2 Fuzzy Logic Systems and Perceptual Computers: Their Similarities and Differences

  • Jerry M. Mendel
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 301)


In this chapter, we compare the interval type-2 fuzzy logic system and perceptual computer, so as to eliminate confusion among researchers about whether or not there really are differences between them. We show that there are many more differences than similarities between them by focusing on the following six issues: inputs and membership functions, fuzzifier versus encoder, rules versus computing with words (CWW) engines, inference versus output of CWW engine, output processing versus decoder, and outputs versus recommendation plus data.


Codebook Computing with words (CWW) CWW engine Defuzzification EKM algorithms Fuzzifier Fuzzy weighted average Interval type-2 fuzzy logic system Interval type-2 fuzzy sets Interval weighted average Jaccard similarity measure KM algorithms Linguistic weighted average Linguistic weighted power mean Novel weighted averages Perceptual computer Perceptual reasoning Rank Ranking band Rules Subjective judgments Similarity Subsethood Type-reduction Encoder 


  1. 1.
    Castillo, O., Melin, P.: Type-2 Fuzzy Logic Theory and Applications. Springer-Verlag, Berlin (2008)MATHGoogle Scholar
  2. 2.
    Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7, 643–658 (1999)CrossRefGoogle Scholar
  3. 3.
    Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8, 535–550 (2000)CrossRefGoogle Scholar
  4. 4.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper-Saddle River (2001)Google Scholar
  5. 5.
    Mendel, J.M.: Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2, 20–29 (2007)Google Scholar
  6. 6.
    Jang, J.S.R., Sun, C.T.: Neuro-fuzzy modeling and control. IEEE Proc 83, 378–406 (1995)CrossRefGoogle Scholar
  7. 7.
    Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and Soft-Computing. Prentice-Hall, Upper Saddle River (1997)Google Scholar
  8. 8.
    Mendel, J.M.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83, 345–377 (1995)CrossRefGoogle Scholar
  9. 9.
    Mendel, J.M: The perceptual computer: an architecture for computing with words. In: Proceedings of Modeling with Words, Workshop in Proceedings of FUZZ-IEEE 35–38, Melbourne, Australia (2001)Google Scholar
  10. 10.
    Mendel, J.M.: An architecture for making judgments using computing with words. Int. J. Appl. Math. Comput. Sci. 12, 325–335 (2002)MATHGoogle Scholar
  11. 11.
    Mendel, J.M.: Computing with words and its relationships with fuzzistics. Info. Sci. 177, 998–1006 (2007)Google Scholar
  12. 12.
    Mendel, J.M.: Computing with words: Zadeh, Turing, Popper and Occam. IEEE Comput. Intell. Mag. 2, 10–17 (2007)CrossRefGoogle Scholar
  13. 13.
    Mendel, J.M., Wu, D.: Perceptual Computing: Aiding People in Making Subjective Judgments. IEEE Press and John Wiley, Hoboken (2010)CrossRefGoogle Scholar
  14. 14.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans on Fuzzy Syst. 4, 103–111 (1996)CrossRefGoogle Scholar
  15. 15.
    Zadeh, L.A: From computing with numbers to computing with words—from manipulation of measurements to manipulation of perceptions. IEEE Trans. Circuits Syst.–I: Fundam. Theory Appls 4, pp. 105–119. (1999)Google Scholar
  16. 16.
    Hagras, H.: Hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12, 524–539 (2004)CrossRefGoogle Scholar
  17. 17.
    Hagras, H.: Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2, 30–43 (2007)CrossRefGoogle Scholar
  18. 18.
    Kreinovich, V., Mouzouris, G.C., Nguyen, H.T: Fuzzy rule-based modeling as a universal approximation tool. In: Nguyen, H.T., Sugeno, M. (eds.) Fuzzy Systems Modeling and Control, pp. 134–195, Kluwer, Boston (1998)Google Scholar
  19. 19.
    Kennedy, J., Eberhart, R: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. (1995)Google Scholar
  20. 20.
    Xi, M., Sun, J., Xu, W.: An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl. Math. Comput. 205, 751–759 (2008)MATHCrossRefGoogle Scholar
  21. 21.
    Yang, S., Wang, M., Jiao, L: A quantum particle swarm optimization. In: Congress on Evolutionary Computation (CEC2004) vol. 1, pp. 320–324. (2004)Google Scholar
  22. 22.
    Mendel, J.M.: Computing derivatives in interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 12, 84–98 (2004)CrossRefGoogle Scholar
  23. 23.
    Mendel, J.M.: Computing with words, when words can mean different things to different People. In: Proceedings of Third International ICSC Symposium on Fuzzy Logic and Applications, Rochester University, Rochester (1999)Google Scholar
  24. 24.
    Mendel, J.M.: Fuzzy sets for words: a new beginning. In: Proceedings of FUZZ-IEEE, pp. 37–42, St. Louis MO (2003)Google Scholar
  25. 25.
    Liu, F., Mendel, J.M.: Encoding words into interval type-2 fuzzy sets using an interval approach. IEEE Trans. Fuzzy Syst. 16, 1503–1521 (2008)CrossRefGoogle Scholar
  26. 26.
    Wu, D., Mendel, J.M., Coupland, S.: Enhanced interval approach for encoding words into interval type-2 fuzzy sets and its convergence analysis. IEEE Trans. Fuzzy Syst. 20, 499–513 (2012)Google Scholar
  27. 27.
    Mamdani, E.H.: Applications of fuzzy algorithms for simple dynamic plant. Proc. IEEE 121, 1585–1588 (1974)Google Scholar
  28. 28.
    Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28, 15–33 (1988)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)MATHCrossRefGoogle Scholar
  30. 30.
    Liu, F., Mendel, J.M.: Aggregation using the fuzzy weighted average, as computed by the KM algorithms. IEEE Trans. Fuzzy Syst. 16, 1–12 (2008)CrossRefGoogle Scholar
  31. 31.
    Wu, D., Mendel, J.M.: Aggregation using the linguistic weighted average and interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 15, 1145–1161 (2007)CrossRefGoogle Scholar
  32. 32.
    Wu, D., Mendel, J.M.: Corrections to Aggregation using the linguistic weighted average and interval type-2 fuzzy sets. IEEE Trans on Fuzzy Systems 16, 1664–1666 (2008)CrossRefGoogle Scholar
  33. 33.
    Rickard, J.T., Aisbett, J., Yager, R.R., Gibbon, G: Fuzzy weighted power means in evaluating decisions. In: Proceedings of World Conference on Soft Computing, San Francisco (2011)Google Scholar
  34. 34.
    Rickard, J.T., Aisbett, J., Yager, R.R., Gibbon, G.: Linguistic weighted power means: comparison with the linguistic weighted average. In: Proceedings of FUZZ-IEEE, pp. 2185–2192. Taipei, Taiwan (2011)Google Scholar
  35. 35.
    Mendel, J.M., Wu, D.: Perceptual reasoning for perceptual computing. IEEE Trans. Fuzzy Syst. 16, 1550–1564 (2008)CrossRefGoogle Scholar
  36. 36.
    Wu, D., Mendel, J.M.: Perceptual reasoning for perceptual computing: a similarity-based approach. IEEE Trans. Fuzzy Syst. 17, 1397–1411 (2009)CrossRefGoogle Scholar
  37. 37.
    Wu, D., Mendel, J.M.: A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 179, 1169–1192 (2009)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132, 195–220 (2001)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Upper Saddle River 1995Google Scholar
  40. 40.
    Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10, 117–127 (2002)CrossRefGoogle Scholar
  41. 41.
    Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14, 808–821 (2006)CrossRefGoogle Scholar
  42. 42.
    Liu, X., Mendel, J.M.: Connect Karnik-Mendel algorithms to root-finding for computing the centroid of an interval type-2 fuzzy set. IEEE Trans. Fuzzy Syst. 19, 652–665 (2011)CrossRefGoogle Scholar
  43. 43.
    Vlachos, I., Sergiadis, G.: Subsethood, entropy, and cardinality for interval-valued fuzzy sets—an algebraic derivation. Fuzzy Sets Syst. 158, 1384–1396 (2007)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Kosko, B.: Neural Network and Fuzzy Systems, a Dynamical Systems Approach to Machine Intelligence. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  45. 45.
    Wu, D., Mendel, J.M.: Enhanced Karnik-Mendel algorithms. IEEE Trans. Fuzzy Syst. 17, 923–934 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Signal and Image Processing Institute, Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations