Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2694 Accesses

Abstract

A central problem in approximation theory is to characterize the best approximation of a function by polynomials, or other classes of simple functions, in terms of the smoothness of the function. In this chapter, we study the characterization of the best approximation by polynomials on the sphere. In the classical setting of one variable, the smoothness of a function on \({\mathbb{S}}^{1}\) is described by the modulus of smoothness, defined via the forward difference of the function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berens, H., Butzer, P.L., Pawelke, S.: Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten. Publ. Res. Inst. Math. Sci. Ser. A. 4, 201–268 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calderoń, A.P., Weiss, G., Zygmund, A.: On the existence of singular integrals. In: Singular Integrals. Proceedings of Symposia in Pure Mathematics, Chicago, IL, pp. 56–73. American Mathematical Society, Providence (1966)

    Google Scholar 

  3. Dai, F., Ditzian, Z., Huang, H.W.: Equivalence of measures of smoothness in L p(S d − 1), 1 < p < ∞. Studia Math. 196, 179–205 (2010)

    Google Scholar 

  4. Dai, F., Xu, Y.: Moduli of smoothness and approximation on the unit sphere and the unit ball. Adv. Math. 224(4), 1233–1310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai, F., Xu, Y.: Polynomial approximation in Sobolev spaces on the unit sphere and the unit ball. J. Approx. Theor. 163, 1400–1418 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, New York (1993)

    Book  MATH  Google Scholar 

  7. Ditzian, Z.: A modulus of smoothness on the unit sphere. J. Anal. Math. 79, 189–200 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ditzian, Z.: Jackson-type inequality on the sphere. Acta Math. Hungar. 102, 1–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ditzian, Z.: Optimality of the range for which equivalence between certain measures of smoothness holds. Studia Math. 198, 271–277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. McGraw-Hill, New York (1953)

    Google Scholar 

  11. Kamzolov, A.I.: The best approximation on the classes of functions W p α(S n) by polynomials in spherical harmonics. Mat. Zametki 32, 285–293 (1982). English translation in Math Notes, 32, 622–628 (1982)

    Article  MathSciNet  Google Scholar 

  12. Kurtz, D.S., Wheeden, R.L.: Results on weighted norm inequalities for multipliers. Trans. Am. Math. Soc. 255, 343–362 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nikolskii, S.M., Lizorkin, P.I.: Approximation on the sphere, survey. In: Approximation and function spaces (Warsaw, 1986). Translated from the Russian by Jerzy Trzeciak, vol. 22, pp. 281–292. Banach Center Publication, PWN, Warsaw (1989)

    Google Scholar 

  14. Pawelke, S.: Über Approximationsordnung bei Kugelfunktionen und algebraischen Polynomen. Tôhoku Math. J. 24, 473–486 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Petrushev, P., Popov, V.: Rational Approximation of Real Functions. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  16. Rudin, W.: Uniqueness theory for Laplace series. Trans. Am. Math. Soc. 68, 287–303 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rustamov, Kh.P.: On the equivalence of some moduli of smoothness on the sphere. Soviet Math. Dokl. 44, 660–664 (1992)

    MathSciNet  Google Scholar 

  18. Rustamov, Kh.P.: On the approximation of functions on a sphere (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 57, 127–148 (1993). Translation in Russian Acad. Sci. Izv. Math. 43(2), 311–329 (1994)

    Google Scholar 

  19. Timan, A.F.: Theory of approximation of functions of a real variable. Translated from the Russian by J. Berry. Translation edited and with a preface by J. Cossar. Reprint of the 1963 English translation. Dover Publications, Mineola, New York (1994)

    Google Scholar 

  20. Wang, K.Y., Li, L.Q.: Harmonic Analysis and Approximation on the Unit Sphere. Science Press, Beijing (2000)

    Google Scholar 

  21. Zygmund, A.: Trigonometric Series, vols. I, II, 2nd edition. Cambridge University Press, New York (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dai, F., Xu, Y. (2013). Approximation on the Sphere. In: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6660-4_4

Download citation

Publish with us

Policies and ethics