Skip to main content

Applications

  • Chapter
  • First Online:
  • 2634 Accesses

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

This chapter contains several topics that can be regarded as applications of what we have developed in the previous chapters. The first topic is tight frames, an active research area that has potential applications in signal processing and sampling theory, among others.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beatson, R.K., zu Castell, W., Xu, Y.: A Pólya criterion for (strict) positive definiteness on the sphere. IMA Numer. Anal. accepted, (2013) arXiv:1110.2437

    Google Scholar 

  2. Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. arXiv:1009.4407

    Google Scholar 

  3. Brauchart, J.S., Hardin, D.P., Saff, E.D.: The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. Contemp. Math. Vol. 578 (2012), 31–61.

    Article  MathSciNet  Google Scholar 

  4. Buhmann, M.D.: Radial basis functions: Theory and implementations. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  5. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  6. Chen, D., Menegatto, V.A., Sun, X.: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131, 2733–2740 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cormack, A.M.: Representation of a function by its line integrals with some radiological applications. J. Appl. Phys. 35, 2908–2913 (1964)

    Article  MATH  Google Scholar 

  8. Dai, F.: Characterizations of function spaces on the sphere using spherical frames. Trans. Am. Math. Soc. 359, 567–589 (2007)

    Article  MATH  Google Scholar 

  9. Deans, S.: The Radon Transform and Some of Its Applications. Wiley, New York (1983)

    MATH  Google Scholar 

  10. Fasshauer, G., Schumaker, L.: Scattered data fitting on the sphere. In: Mathematical Methods for Curves and Surfaces, II (Lillehammer, 1997). Innov. Appl. Math., pp. 117–166. Vanderbilt University Press, Nashville (1998)

    Google Scholar 

  11. Fazekas, G., Levenstein, V.I.: On upper bounds for code distance and covering radius of designs in polynomial metric spaces. J. Combin. Theor. Ser. A. 70, 267–288 (1995)

    Article  MATH  Google Scholar 

  12. Gneiting, T.: Simple tests for the validity of correlation function models on the circle. Stat. Probab. Lett. 39, 119–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gneiting, T.: Strictly and non-strictly positive definite functions on spheres. ArXiv:1111.7077

    Google Scholar 

  14. Gröchenig, K.H.: Foundations of Time–Frequency Analysis. Birkhäuser, Boston (2000)

    Google Scholar 

  15. Hardin, D.P., Saff, E.B.: Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds. Adv. Math. 193, 174–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Helgason, S.: Groups and Geometric Analysis. Academic, New York (1984)

    MATH  Google Scholar 

  17. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projection, 2nd edition. Springer, New York (2009)

    Book  Google Scholar 

  18. Ivanov, K., Petrushev, P., Xu, Y.: Sub-exponentially localized kernels and frames induced by orthogonal expansions. Math. Z. 264, 361–397 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jetter, K., Stöckler, J., Ward, J.: Error estimates for scattered data interpolation on spheres. Math. Comp. 68, 733–747 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988) (Reprint as Classics in Applied Mathematics, 33. SIAM, Philadelphia, PA, 2001)

    Book  Google Scholar 

  21. Kuijlaars, A.B.J., Saff, E.B.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350, 523–538 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuijlaars, A.B.J., Saff, E.B., Sun, X.: On separation of minimal Riesz energy points on spheres in Euclidean spaces. J. Comput. Appl. Math. 199, 172–180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Logan, B., Shepp, I.: Optimal reconstruction of a function from its projections. Duke Math. J. 42, 649–659 (1975)

    MathSciNet  Google Scholar 

  24. Madych, W.R.: Summability and approximate reconstruction from Radon transform data. Contemp. Math. 113, 189–219 (1990)

    Article  MathSciNet  Google Scholar 

  25. Marr, R.: On the reconstruction of a function on a circular domain from a sampling of its line integrals. J. Math. Anal. Appl. 45, 357–374 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Menegatto, V.A.: Strictly positive definite functions on spheres. PhD dissertation, University of Texas, Austin (1992)

    Google Scholar 

  27. Mhaskar, H.N.: On the representation of smooth functions on the sphere using finitely many bits. Appl. Comput. Harmon. Anal. 18, 215–233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Narcowich, F.J., Ward, J.D.: Scattered data interpolation on spheres: Error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Narcowich, F.J., Petrushev, P., Ward, J.D.: Decomposition of Besov and Triebel–Lizorkin spaces on the sphere. J. Funct. Anal. 238, 530–564 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Narcowich, F.J., Petrushev, P., Ward, J.D.: Localized tight frames on spheres. SIAM J. Math. Anal. 38, 574–594 (2006)

    Article  MathSciNet  Google Scholar 

  31. Petrushev, P.: Approximation by ridge functions and neural networks. SIAM J. Math. Anal. 30, 155–189 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Petrushev, P., Xu, Y.: Localized polynomial frames on the interval with Jacobi weights. J. Fourier Anal. Appl. 11, 557–575 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Petrushev, Xu, Y.: Localized polynomial frames on the ball. Constructive Approx. 27, 121–148 (2008)

    Google Scholar 

  34. Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tischenko, O., Xu, Y., Hoeschen, C.: Main features of the tomographic reconstruction algorithm OPED. Radiat. Prot. Dosimetry 139, 204–207 (2010)

    Article  Google Scholar 

  36. Yudin, V.A.: Covering a sphere and extremal properties of orthogonal polynomials. Diskret. Mat. 7(3), 81–88 (1995). English translation, Discrete Math. Appl. 5(4), 371–379, (1995)

    Google Scholar 

  37. Yudin, V.A.: Distribution of the points of a design on a sphere (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 69(5), 205–224 (2005). English translation, Izv. Math. 69, 1061–1079 (2005)

    Google Scholar 

  38. Wade, J.: A discretized Fourier orthogonal expansion in orthogonal polynomials on a cylinder. J. Approx. Theor. 162, 1545–1576 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wendland, H.: Scattered data approximation. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  40. Xu, Y.: A direct approach to the reconstruction of images from Radon projections. Adv. Appl. Math. 36, 388–420 (2006)

    Article  MATH  Google Scholar 

  41. Xu, Y.: Reconstruction from Radon projections and orthogonal expansion on a ball. J. Phys. A: Math. Theor. 40, 7239–7253 (2007)

    Article  MATH  Google Scholar 

  42. Xu, Y., Cheney, W.: Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116, 977–981 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, Y., Tischenko, O.: Fast OPED algorithm for reconstruction of images from Radon data. East. J. Approx. 12, 427–444 (2007)

    MathSciNet  Google Scholar 

  44. Xu, Y., Tischenko, O., Heoschen, C.: Fast implementation of the image reconstruction algorithm OPED. In: SPIE Proceedings, vol. 7258, Medical Imaging 2009: Physics of Medical Imaging, 72585F

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dai, F., Xu, Y. (2013). Applications. In: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6660-4_14

Download citation

Publish with us

Policies and ethics