Skip to main content

Weighted Best Approximation by Polynomials

  • Chapter
  • First Online:
  • 2631 Accesses

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

The structure of spherical harmonics allows us to develop a theory of best polynomial approximation on the sphere based essentially on multipliers, which is, historically, the first approach in this direction. It turns out that the entire framework based on multipliers can be established more generally for h-spherical harmonics associated with reflection-invariant weight functions developed in Chap. 7, which leads to a theory of weighted best approximation by polynomials that we shall present in its full generality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Belinsky, E., Dai, F., Ditzian, Z.: Multivariate approximating averages. J. Approx. Theor. 125, 85–105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butzer, P.L., Jansche, S.: Lipschitz spaces on compact manifolds. J. Funct. Anal. 7, 242–266 (1971)

    Article  MATH  Google Scholar 

  3. Dai, F., Ditzian, Z.: Combinations of multivariate averages. J. Approx. Theor. 131, 268–283 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dai, F., Ditzian, Z.: Littlewood–Paley theory and a sharp Marchaud inequality. Acta Sci. Math. (Szeged) 71, 65–90 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Dai, F., Ditzian, Z., Tikhonov, S.: Sharp Jackson inequalities. J. Approx. Theor. 151, 86–112 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ditzian, Z.: Fractional derivatives and best approximation. Acta Math. Hungar. 81, 323–348 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ditzian, Z., Prymak, A.: Convexity, moduli of smoothness and a Jackson-type inequality. Acta Math. Hungar. 130(3), 254–285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kalybin, G.A.: On moduli of smoothness of functions given on the sphere. Soviet Math. Dokl. 35, 619–622 (1987)

    Google Scholar 

  9. Kušnirenko, G.G.: The approximation of functions defined on the unit sphere by finite spherical sums (Russian). Naučn. Dokl. Vysš. Skoly Fiz. Mat. Nauki 4, 47–53 (1958)

    Google Scholar 

  10. Nikolskii, S.M., Lizorkin, P.I.: Approximation of functions on the sphere. Izv. AN SSSR, Ser. Mat. 51(3), 635–651 (1987)

    Google Scholar 

  11. Pawelke, S.: Über Approximationsordnung bei Kugelfunktionen und algebraischen Polynomen. Tôhoku Math. J. 24, 473–486 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rustamov, Kh.P.: On the best approximation of functions on the sphere in the metric of \(L_{p}({\mathbb{S}}^{n})\), 1 < p < . Anal. Math. 17, 333–348 (1991)

    Google Scholar 

  13. Rustamov, Kh.P.: On the approximation of functions on a sphere (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 57, 127–148 (1993). Translation in Russian Acad. Sci. Izv. Math. 43(2), 311–329 (1994)

    Google Scholar 

  14. Timan, M.F.: Converse theorems of the constructive theory of functions in the spaces L p . Mat. Sborn. 46(88), 125–132 (1958)

    MathSciNet  Google Scholar 

  15. Timan, M.F.: On Jackson’s theorem in L p spaces. Ukrain. Mat. Zh. 18(1), 134–137 (1966 in Russian)

    Google Scholar 

  16. Wang, K.Y., Li, L.Q.: Harmonic Analysis and Approximation on the Unit Sphere. Science Press, Beijing (2000)

    Google Scholar 

  17. Xu, Y.: Generalized translation operator and approximation in several variables. J. Comp. Appl. Math. 178, 489–512 (2005)

    Article  MATH  Google Scholar 

  18. Xu, Y.: Weighted approximation of functions on the unit sphere. Constr. Approx. 21, 1–28 (2005)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dai, F., Xu, Y. (2013). Weighted Best Approximation by Polynomials. In: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6660-4_10

Download citation

Publish with us

Policies and ethics