Skip to main content

Single Nucleotide Polymorphisms and Next Generation Sequencing

  • Chapter
  • First Online:
Human Gametes and Preimplantation Embryos

Abstract

Single cell analysis for preimplantation genetic diagnosis (PGD) of single gene defects was first used to identify the sex of embryos in a series of couples at risk of various X-linked conditions, which typically only affect males. The use of PCR at the single cell level was still in its infancy and even doubling the typical number of amplification cycles failed to amplify unique target sequences reliably. For this reason, PCR amplification of a Y-linked repeat sequence, present in thousands of copies per cell, was used for identification of male embryos. However, the extreme sensitivity of this protocol and the rapid build-up of amplified DNA products in the laboratory environment, soon led to the appearance of contamination and false positive results in blank (negative) controls. Furthermore, in a minority of single male cells amplification still failed, resulting in a male embryo being identified as female, which lead to the first clinical misdiagnosis following PGD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Handyside AH, Kontogianni EH, Hardy K, Winston RM. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344:768–70.

    Article  PubMed  CAS  Google Scholar 

  2. Coutelle C, Williams C, Handyside A, Hardy K, Winston R, Williamson R. Genetic analysis of DNA from single human oocytes: a model for preimplantation diagnosis of cystic fibrosis. BMJ. 1989;299:22–4.

    Article  PubMed  CAS  Google Scholar 

  3. Holding C, Monk M. Diagnosis of beta-thalassaemia by DNA amplification in single blastomeres from mouse preimplantation embryos. Lancet. 1989;2:532–5.

    Article  PubMed  CAS  Google Scholar 

  4. Handyside AH, Lesko JG, Tarin JJ, Winston RM, Hughes MR. Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis [see comments]. N Engl J Med. 1992;327:905–9.

    Article  PubMed  CAS  Google Scholar 

  5. Ray PF, Winston RM, Handyside AH. Reduced allele dropout in single-cell analysis for preimplantation genetic diagnosis of cystic fibrosis. J Assist Reprod Genet. 1996;13:104–6.

    Article  PubMed  CAS  Google Scholar 

  6. Piyamongkol W, Bermúdez MG, Harper JC, Wells D. Detailed investigation of factors influencing amplification efficiency and allele drop-out in single cell PCR: implications for preimplantation genetic diagnosis. Mol Hum Reprod. 2003;9:411–20.

    Article  PubMed  CAS  Google Scholar 

  7. Ao A, Wells D, Handyside AH, Winston RM, Delhanty JD. Preimplantation genetic diagnosis of inherited cancer: familial adenomatous polyposis coli. J Assist Reprod Genet. 1998;15:140–4.

    Article  PubMed  CAS  Google Scholar 

  8. Kuliev A, Rechitsky S, Verlinsky O, Ivakhnenko V, Evsikov S, Wolf G, et al. Preimplantation diagnosis of thalassemias. J Assist Reprod Genet. 1998;15:219–25.

    Article  PubMed  CAS  Google Scholar 

  9. Fiorentino F, Biricik A, Nuccitelli A, De Palma R, Kahraman S, Iacobelli M, et al. Strategies and clinical outcome of 250 cycles of Preimplantation Genetic Diagnosis for single gene disorders. Hum Reprod. 2006;21:670–84.

    Article  PubMed  CAS  Google Scholar 

  10. Bermudez MG, Piyamongkol W, Tomaz S, Dudman E, Sherlock JK, Wells D. Single-cell sequencing and mini-sequencing for preimplantation genetic diagnosis. Prenat Diagn. 2003;23:669–77.

    Article  PubMed  CAS  Google Scholar 

  11. Fiorentino F, Kahraman S, Karadayi H, Biricik A, Sertyel S, Karlikaya G, et al. Short tandem repeats haplotyping of the HLA region in preimplantation HLA matching. Eur J Hum Genet. 2005;13:953–8.

    Article  PubMed  CAS  Google Scholar 

  12. Van de Velde H, De Rycke M, De Man C, De Hauwere K, Fiorentino F, Kahraman S, et al. The experience of two European preimplantation genetic diagnosis centres on human leukocyte antigen typing. Hum Reprod. 2009;24:732–40.

    Article  PubMed  Google Scholar 

  13. Fiorentino F, Kokkali G, Biricik A, Stavrou D, Ismailoglu B, De Palma R, et al. Polymerase chain reaction-based detection of chromosomal imbalances on embryos: the evolution of preimplantation genetic diagnosis for chromosomal translocations. Fertil Steril. 2010;94:2001–11, 2011.e1–6.

    Article  PubMed  CAS  Google Scholar 

  14. Renwick PJ, Trussler J, Ostad-Saffari E, Fassihi H, Black C, Braude P, et al. Proof of principle and first cases using preimplantation genetic haplotyping—a paradigm shift for embryo diagnosis. Reprod Biomed Online. 2006;13:110–9.

    Article  PubMed  CAS  Google Scholar 

  15. Wells D, Sherlock JK, Handyside AH, Delhanty JD. Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. Nucleic Acids Res. 1999;27:1214–8.

    Article  PubMed  CAS  Google Scholar 

  16. Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw MA, Grudzinskas JG, et al. Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease. Mol Hum Reprod. 2004;10:767–72.

    Article  PubMed  CAS  Google Scholar 

  17. Hellani A, Coskun S, Benkhalifa M, Tbakhi A, Sakati N, Al-Odaib A, et al. Multiple displacement amplification on single cell and possible PGD applications. Mol Hum Reprod. 2004;10:847–52.

    Article  PubMed  CAS  Google Scholar 

  18. Fishel S, Gordon A, Lynch C, Dowell K, Ndukwe G, Kelada E, et al. Live birth after polar body array comparative genomic hybridization prediction of embryo ploidy-the future of IVF? Fertil Steril. 2010;93:1006. e7–10.

    Article  Google Scholar 

  19. Geraedts J, Montag M, Magli MC, Repping S, Handyside A, Staessen C, et al. Polar body array CGH for prediction of the status of the corresponding oocyte. Part I: clinical results. Hum Reprod. 2011;26:3173–80.

    Article  PubMed  CAS  Google Scholar 

  20. Schoolcraft WB, Fragouli E, Stevens J, Munne S, Katz-Jaffe MG, Wells D. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2010;94:1700–6.

    Article  PubMed  Google Scholar 

  21. Fragouli E, Katz-Jaffe M, Alfarawati S, Stevens J, Colls P, Goodall NN, et al. Comprehensive chromosome screening of polar bodies and blastocysts from couples experiencing repeated implantation failure. Fertil Steril. 2010;94:875–87.

    Article  PubMed  Google Scholar 

  22. Yang Z, Liu J, Collins GS, Salem SA, Liu X, Lyle SS, et al. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet. 2012;5:24.

    Article  PubMed  Google Scholar 

  23. Brezina PR, Benner A, Rechitsky S, Kuliev A, Pomerantseva E, Pauling D, et al. Single-gene testing combined with single nucleotide polymorphism microarray preimplantation genetic diagnosis for aneuploidy: a novel approach in optimizing pregnancy outcome. Fertil Steril. 2011;95:1786 e5–8.

    Google Scholar 

  24. Treff NR, Su J, Tao X, Levy B, Scott Jr RT. Accurate single cell 24 chromosome aneuploidy screening using whole genome amplification and single nucleotide polymorphism microarrays. Fertil Steril. 2010;94:2017–21.

    Article  PubMed  CAS  Google Scholar 

  25. Johnson DS, Cinnioglu C, Ross R, Filby A, Gemelos G, Hill M, et al. Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. Mol Hum Reprod. 2010;16:944–9.

    Article  PubMed  CAS  Google Scholar 

  26. Rabinowitz M, Ryan A, Gemelos G, Hill M, Baner J, Cinnioglu C, et al. Origins and rates of aneuploidy in human blastomeres. Fertil Steril. 2012;97:395–401.

    Article  PubMed  Google Scholar 

  27. Bisignano A, Wells D, Harton G, Munne S. PGD and aneuploidy screening for 24 chromosomes: advantages and disadvantages of competing platforms. Reprod Biomed Online. 2011;23(6):677–85.

    Article  PubMed  CAS  Google Scholar 

  28. Handyside AH, Harton GL, Mariani B, Thornhill AR, Affara N, Shaw MA, et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J Med Genet. 2010;47:651–8.

    Article  PubMed  Google Scholar 

  29. Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83:52–62.

    Article  PubMed  CAS  Google Scholar 

  30. El Shourbagy SH, Spikings EC, Freitas M, St John JC. Mitochondria directly influence fertilisation outcome in the pig. Reproduction. 2006;131:233–45.

    Article  PubMed  CAS  Google Scholar 

  31. Manwaring N, Jones MM, Wang JJ, Rochtchina E, Howard C, Mitchell P, et al. Population prevalence of the MELAS A3243G mutation. Mitochondrion. 2007;7:230–3.

    Article  PubMed  CAS  Google Scholar 

  32. Tajima H, Sueoka K, Moon SY, Nakabayashi A, Sakurai T, Murakoshi Y, et al. The development of novel quantification assay for mitochondrial DNA heteroplasmy aimed at preimplantation genetic diagnosis of Leigh encephalopathy. J Assist Reprod Genet. 2007;24:227–32.

    Article  PubMed  Google Scholar 

  33. Bredenoord AL, Dondorp W, Pennings G, De Die-Smulders CE, De Wert G. PGD to reduce reproductive risk: the case of mitochondrial DNA disorders. Hum Reprod. 2008;23:2392–401.

    Article  PubMed  CAS  Google Scholar 

  34. Gigarel N, Hesters L, Samuels DC, Monnot S, Burlet P, Kerbrat V, et al. Poor correlations in the levels of pathogenic mitochondrial DNA mutations in polar bodies versus oocytes and blastomeres in humans. Am J Hum Genet. 2011;88:494–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagan Wells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Handyside, A.H., Wells, D. (2013). Single Nucleotide Polymorphisms and Next Generation Sequencing. In: Gardner, D., Sakkas, D., Seli, E., Wells, D. (eds) Human Gametes and Preimplantation Embryos. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6651-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6651-2_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6650-5

  • Online ISBN: 978-1-4614-6651-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics