Skip to main content

CNS Manifestations of Hyponatremia and Its Treatment

  • Chapter
  • First Online:
Hyponatremia

Abstract

Hyponatremia is by far the commonest electrolyte disorder encountered in the clinical practice. The extracellular osmolarity is an important determinant of action potential conduction in neurons as well as glial cell volume. Neurological impairment is a widely recognised complication of hyponatremia and this occurs as a result of the failure of brain adaptative mechanisms to low serum osmolarity or abrupt osmotic changes. Because the brain is enclosed in a rigid skull, any changes in the brain volume induced by a decreased extracellular osmolarity could potentially result in severe symptoms like seizure or fatal brain herniation. On the other hand it has been established that rapid correction of hyponatremia is the principal risk factor for osmotic demyelination syndrome (ODS) which is a peculiar disorder characterised by loss of myelin in specific regions of the central nervous system.

This chapter will review the mechanisms of brain adaptation to hyponatremia as well as the pathophysiology of the neurological manifestations of hyponatremia including ODS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrogué HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342:1581–9.

    PubMed  Google Scholar 

  2. Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. Am J Med. 2006;119:S30–5.

    PubMed  CAS  Google Scholar 

  3. Upadhyay A, Jaber BL, Madias NE. Epidemiology of hyponatremia. Semin Nephrol. 2009;29:227–38.

    PubMed  CAS  Google Scholar 

  4. Waikar SS, Mount DB, Curhan GC. Mortality after hospitalization with mild, moderate, and severe hyponatremia. Am J Med. 2009;122:857–65.

    PubMed  CAS  Google Scholar 

  5. Wald R, Jaber BL, Price LL, Upadhyay A, Madias NE. Impact of hospital-associated hyponatremia on selected outcomes. Arch Intern Med. 2010;170:294–302.

    PubMed  CAS  Google Scholar 

  6. Ayus JC, Krothapalli RK, Arieff AI. Treatment of symptomatic hyponatremia and its relation to brain damage. A prospective study. N Engl J Med. 1987;317:1190–5.

    PubMed  CAS  Google Scholar 

  7. Laureno R. Experimental pontine and extrapontine myelinolysis. Trans Am Neurol Assoc. 1980;105:354–8.

    PubMed  CAS  Google Scholar 

  8. Laureno R. Rapid correction of hyponatremia: cause of pontine myelinolysis? Am J Med. 1981;71:846–7.

    PubMed  CAS  Google Scholar 

  9. Kleinschmidt-DeMasters BK, Norenberg MD. Rapid correction of hyponatremia causes demyelination: relation to central pontine myelinolysis. Science. 1981;211:1068–70.

    PubMed  CAS  Google Scholar 

  10. Norenberg MD, Leslie KO, Robertson AS. Association between rise in serum sodium and central pontine myelinolysis. Ann Neurol. 1982;11:128–35.

    PubMed  CAS  Google Scholar 

  11. Laureno R. Central pontine myelinolysis following rapid correction of hyponatremia. Ann Neurol. 1983;13:232–42.

    PubMed  CAS  Google Scholar 

  12. Sterns RH, Riggs JE, Schochet Jr SS. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med. 1986;314:1535–42.

    PubMed  CAS  Google Scholar 

  13. Arányi Z, Kovács T, Szirmai I, Vastagh I. Reversible nerve conduction slowing in hyponatremia. J Neurol. 2004;251:1532–3.

    PubMed  Google Scholar 

  14. Decaux G. Is asymptomatic hyponatremia really asymptomatic? Am J Med. 2006;119:S79–82.

    PubMed  Google Scholar 

  15. Sterns RH. The treatment of hyponatremia: first, do no harm. Am J Med. 1990;88:557–60.

    PubMed  CAS  Google Scholar 

  16. Sterns RH, Hix JK. Overcorrection of hyponatremia is a medical emergency. Kidney Int. 2009;76:587–9.

    PubMed  Google Scholar 

  17. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: evolution of osmolyte systems. Science. 1982;217:1214–22.

    PubMed  CAS  Google Scholar 

  18. Somero GNYPH. Osmolytes and cell-volume regulation: physiological and evolutionary principles. In: Jamieson JFHJD, editor. Handbook of physiology. New York: Oxford University Press; 1997. p. 441–84.

    Google Scholar 

  19. King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol. 1996;58:619–48.

    PubMed  CAS  Google Scholar 

  20. Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev. 2009;89:193–277.

    PubMed  CAS  Google Scholar 

  21. Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, et al. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998;78:247–306.

    PubMed  CAS  Google Scholar 

  22. Melton JE, Nattie EE. Brain and CSF water and ions during dilutional and isosmotic hyponatremia in the rat. Am J Physiol Regul Integr Comp Physiol. 1983;244:R724–32.

    CAS  Google Scholar 

  23. Arieff AI, Llach F, Massry SG. Neurological manifestations and morbidity of hyponatremia. Correlation with brain water and electrolytes. Medicine. 1976;55:121–9.

    PubMed  CAS  Google Scholar 

  24. Soupart A, Penninckx R, Stenuit A, Decaux G. Lack of major hypoxia and significant brain damage in rats despite dramatic hyponatremic encephalopathy. J Lab Clin Med. 1997;130:226–31.

    PubMed  CAS  Google Scholar 

  25. Verbalis JG. An experimental model of syndrome of inappropriate antidiuretic hormone secretion in the rat. Am J Physiol. 1984;247:E540–53.

    PubMed  CAS  Google Scholar 

  26. Verbalis J. Hyponatremia induced by vasopressin or desmopressin in female and male rats. J Am Soc Nephrol. 1993;3:1600–6.

    PubMed  CAS  Google Scholar 

  27. Verbalis JG, Gullans SR. Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res. 1991;567:274–82.

    PubMed  CAS  Google Scholar 

  28. Videen JS, Michaelis T, Pinto P, Ross BD. Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J Clin Invest. 1995;95:788–93.

    PubMed  CAS  Google Scholar 

  29. Lien YH, Shapiro JI, Chan L. Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J Clin Invest. 1991;88:303–9.

    PubMed  CAS  Google Scholar 

  30. Olson JE, Banks M, Dimlich RV, Evers J. Blood-brain barrier water permeability and brain osmolyte content during edema development. Acad Emerg Med. 1997;4:662–73.

    PubMed  CAS  Google Scholar 

  31. Pasantes-Morales H, Lezama RA, Ramos-Mandujano G, Tuz KL. Mechanisms of cell volume regulation in hypo-osmolality. Am J Med. 2006;119:S4–11.

    PubMed  CAS  Google Scholar 

  32. Sterns RH, Baer J, Ebersol S, Thomas D, Lohr JW, Kamm DE. Organic osmolytes in acute hyponatremia. Am J Physiol. 1993;264:F833.

    PubMed  CAS  Google Scholar 

  33. Olson JE. Osmolyte contents of cultured astrocytes grown in hypoosmotic medium. Biochim Biophys Acta. 1999;1453:175–9.

    PubMed  CAS  Google Scholar 

  34. Silver SM, Schroeder BM, Bernstein P, Sterns RH. Brain adaptation to acute hyponatremia in young rats. Am J Physiol. 1999;276:R1595–9.

    PubMed  CAS  Google Scholar 

  35. Verbalis JG, Gullans SR. Rapid correction of hyponatremia produces differential effects on brain osmolyte and electrolyte reaccumulation in rats. Brain Res. 1993;606:19–27.

    PubMed  CAS  Google Scholar 

  36. Lien YH. Role of organic osmolytes in myelinolysis. A topographic study in rats after rapid correction of hyponatremia. J Clin Invest. 1995;95:1579–86.

    PubMed  CAS  Google Scholar 

  37. Silver SM, Schroeder BM, Sterns RH, Rojiani AM. Myoinositol administration improves survival and reduces myelinolysis after rapid correction of chronic hyponatremia in rats. J Neuropathol Exp Neurol. 2006;65:37–44.

    PubMed  CAS  Google Scholar 

  38. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159–63.

    PubMed  CAS  Google Scholar 

  39. Yang B, Zador Z, Verkman AS. Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J Biol Chem. 2008;283:15280–6.

    PubMed  CAS  Google Scholar 

  40. Strange K, Emma F, Jackson PS. Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol Cell Physiol. 1996;270:C711–30.

    CAS  Google Scholar 

  41. Isaacks RE, Bender AS, Kim CY, Norenberg MD. Effect of osmolality and myo-inositol deprivation on the transport properties of myo-inositol in primary astrocyte cultures. Neurochem Res. 1997;22:1461–9.

    PubMed  CAS  Google Scholar 

  42. Foster DJ, Vitvitsky VM, Banerjee R, Heacock AM, Fisher SK. Muscarinic receptor regulation of osmosensitive taurine transport in human SH-SY5Y neuroblastoma cells. J Neurochem. 2009;108:437–49.

    PubMed  CAS  Google Scholar 

  43. Barakat L, Wang D, Bordey A. Carrier-mediated uptake and release of taurine from Bergmann glia in rat cerebellar slices. J Physiol. 2002;541:753–67.

    PubMed  CAS  Google Scholar 

  44. Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G. Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med. 2006;119:71.

    PubMed  CAS  Google Scholar 

  45. Ayus JC, Achinger SG, Arieff A. Brain cell volume regulation in hyponatremia: role of gender, age, vasopressin and hypoxia. Am J Physiol Renal Physiol. 2008;268:F619.

    Google Scholar 

  46. Ayus JC, Krothapalli RK, Arieff AI. Sexual differences in survival with severe symptomatic hyponatremia (abstract). Kidney Int. 1988;34:180A.

    Google Scholar 

  47. Halberthal M, Halperin ML, Bohn D. Acute hyponatraemia in children admitted to hospital: retrospective analysis of factors contributing to its development and resolution. Br Med J. 2001;322:780–2.

    CAS  Google Scholar 

  48. Moritz ML, Ayus JC. Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics. 2003;111:227–30.

    PubMed  Google Scholar 

  49. Achinger SG, Moritz ML, Ayus JC. Dysnatremias: why are patients still dying? South Med J. 2006;99:353–62. quiz 363–354.

    PubMed  Google Scholar 

  50. Moritz ML, Ayus JC. Hospital-induced hyponatremia. J Pediatr. 2005;147:273–4. author reply 274–275.

    PubMed  Google Scholar 

  51. Moritz ML. Reducing risks of hospital acquired hyponatremia. Pediatr Neurol. 2005;33:75. author reply 75–76.

    PubMed  Google Scholar 

  52. Arieff AI. Postoperative hyponatraemic encephalopathy following elective surgery in children. Paediatr Anaesth. 1998;8:1–4.

    PubMed  CAS  Google Scholar 

  53. Ayus JC, Arieff AI. Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. J Am Med Assoc. 1999;281:2299–304.

    CAS  Google Scholar 

  54. Ayus JC, Wheeler JM, Arieff AI. Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med. 1992;117:891–7.

    PubMed  CAS  Google Scholar 

  55. Wijdicks EFM, Larson TS. Absence of postoperative hyponatremia syndrome in young, healthy females. Ann Neurol. 1994;35:626–8.

    PubMed  CAS  Google Scholar 

  56. Fraser CL, Swanson RA. Female sex hormones inhibit volume regulation in rat brain astrocyte culture. Am J Physiol Cell Physiol. 1994;267:C909–14.

    CAS  Google Scholar 

  57. Ayus JC, Armstrong D, Arieff A. Hyponatremia with hypoxia: effects on brain adaptation, perfusion, and histology in rodents. Kidney Int. 2006;69:1319–25.

    PubMed  CAS  Google Scholar 

  58. Vexler ZS, Ayus JC, Roberts TPL, Fraser CL, Kucharczyk J, Arieff AI. Hypoxic and ischemic hypoxia exacerbate brain injury associated with metabolic encephalopathy in laboratory animals. J Clin Invest. 1994;93:256–64.

    PubMed  CAS  Google Scholar 

  59. Arieff AI. Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med. 1986;314:1529–35.

    PubMed  CAS  Google Scholar 

  60. Ayus JC, Varon J, Arieff AI. Hyponatremia, cerebral edema, and noncardiogenic pulmonary edema in marathon runners. Ann Intern Med. 2000;132:711–4.

    PubMed  CAS  Google Scholar 

  61. Ayus JC, Arieff AI. Pulmonary complications of hyponatremic encephalopathy: noncardiogenic pulmonary edema and hypercapnic respiratory failure. Chest. 1995;107:517–21.

    PubMed  CAS  Google Scholar 

  62. Hoorn EJ, Geary D, Robb M, Halperin ML, Bohn D. Acute hyponatremia related to intravenous fluid administration in hospitalized children: an observational study. Pediatrics. 2004;113:1279–84.

    PubMed  Google Scholar 

  63. Hew TD, Chorley JN, Cianca JC, Divine JG. The incidence, risk factors, and clinical manifestations of hyponatremia in marathon runners. Clin J Sport Med. 2003;13:41–7.

    PubMed  Google Scholar 

  64. Hoorn EJ, Rivadeneira F, van Meurs JB, Ziere G, Stricker BH, Hofman A, et al. Mild hyponatremia as a risk factor for fractures: the Rotterdam Study. J Bone Miner Res. 2011;26:1822–8.

    PubMed  CAS  Google Scholar 

  65. Gankam Kengne F, Andres C, Sattar L, Melot C, Decaux G. Mild hyponatremia and risk of fracture in the ambulatory elderly. QJM. 2008;101:583–8.

    PubMed  CAS  Google Scholar 

  66. Kinsella S, Moran S, Sullivan MO, Molloy MG, Eustace JA. Hyponatremia independent of osteoporosis is associated with fracture occurrence. Clin J Am Soc Nephrol. 2010;5:275–80.

    PubMed  CAS  Google Scholar 

  67. Barsony J, Sugimura Y, Verbalis JG. Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J Biol Chem. 2011;286:10864–75.

    PubMed  CAS  Google Scholar 

  68. Verbalis JG, Barsony J, Sugimura Y, Tian Y, Adams DJ, Carter EA, et al. Hyponatremia-induced osteoporosis. J Bone Miner Res. 2010;25:554–63.

    PubMed  CAS  Google Scholar 

  69. Ayus JC, Moritz ML. Bone disease as a new complication of hyponatremia: moving beyond brain injury. Clin J Am Soc Nephrol. 2010;5:167–8.

    PubMed  CAS  Google Scholar 

  70. Renneboog BSL, Decaux G. Determination of threshold for attention and gait deficits encountered in chronic hyponatremia (Abstract). J Am Soc Nephrol. 2006;17:37A.

    Google Scholar 

  71. Decaux G, Szyper M, Grivegnée A. Cerebral ventricular volume during hyponatraemia. J Neurol Neurosurg Psychiatry. 1983;46:443–5.

    PubMed  CAS  Google Scholar 

  72. Gross P. Treatment of severe hyponatremia. Kidney Int. 2001;60:2417–27.

    PubMed  CAS  Google Scholar 

  73. Gankam Kengne F, Nicaise C, Soupart A, Boom A, Schiettecatte J, Pochet R, et al. Astrocytes are an early target in osmotic demyelination syndrome. J Am Soc Nephrol. 2011;22:1834–45.

    PubMed  Google Scholar 

  74. Gankam Kengne F, Soupart A, Pochet R, Brion JP, Decaux G. Re-induction of hyponatremia after rapid overcorrection of hyponatremia reduces mortality in rats. Kidney Int. 2009;76:614–21.

    PubMed  Google Scholar 

  75. Fraser CL, Arieff AI. Fatal central diabetes mellitus and insipidus resulting from untreated hyponatremia: a new syndrome. Ann Intern Med. 1990;112:113–9.

    PubMed  CAS  Google Scholar 

  76. Moritz ML, Ayus JC. The pathophysiology and treatment of hyponatraemic encephalopathy: an update. Nephrol Dial Transplant. 2003;18:2486–91.

    PubMed  Google Scholar 

  77. Moritz ML, Ayus JC. 100 cm3 3 % sodium chloride bolus: a novel treatment for hyponatremic encephalopathy. Metab Brain Dis. 2010;25:91–6.

    PubMed  Google Scholar 

  78. Decaux G, Soupart A. Treatment of symptomatic hyponatremia. Am J Med Sci. 2003;326:25–30.

    PubMed  Google Scholar 

  79. Rosenbaum JF, Rothman JS, Murray GB. Psychosis and water intoxication. J Clin Psychiatry. 1979;40:287–91.

    PubMed  CAS  Google Scholar 

  80. Helwig FC, Schutz CB, Kuhn HP. Water intoxication. Moribund patient cured by administration of hypertonic salt solution. JAMA. 1938;110:644–5.

    Google Scholar 

  81. Ayus JC, Olivero JJ, Frommer JP. Rapid correction of severe hyponatremia with intravenous hypertonic saline solution. Am J Med. 1982;72:43–8.

    PubMed  CAS  Google Scholar 

  82. Worthley LG, Thomas PD. Treatment of hyponatremic seizures with intravenous 29.2 % saline. Br Med J. 1986;292:168–70.

    CAS  Google Scholar 

  83. Hantman D, Rossier B, Zohlman R, Schrier RW. Rapid correction of hyponatremia in the syndrome of inappropriate secretion of antidiuretic hormone. Ann Intern Med. 1973;78:870–2.

    PubMed  CAS  Google Scholar 

  84. Adams RD, Victor M, Mancall EL. Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. AMA Arch Neurol Psychiatry. 1959;81:154–72.

    PubMed  CAS  Google Scholar 

  85. Laureno R, Karp BI. Pontine and extrapontine myelinolysis following rapid correction of hyponatremia. Lancet. 1988;1:1439–41.

    PubMed  CAS  Google Scholar 

  86. Kleinschmidt-DeMasters BK, Norenberg MD. Neuropathologic observations in electrolyte-induced myelinolysis in the rat. J Neuropathol Exp Neurol. 1982;41:67–80.

    PubMed  CAS  Google Scholar 

  87. Cluitmans FHM, Meinders AE. Management of severe hyponatremia: rapid or slow correction? Am J Med. 1990;88:161–6.

    PubMed  CAS  Google Scholar 

  88. Sterns RH. Neurological deterioration following treatment for hyponatremia. Am J Kidney Dis. 1989;13:434–7.

    PubMed  CAS  Google Scholar 

  89. Sterns RH, Cappuccio JD, Silver SM, Cohen EP. Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. J Am Soc Nephrol. 1994;4:1522–30.

    PubMed  CAS  Google Scholar 

  90. Menger H, Jorg J. Outcome of central pontine and extrapontine myelinolysis (n = 44). J Neurol. 1999;246:700–5.

    PubMed  CAS  Google Scholar 

  91. Kallakatta RN, Radhakrishnan A, Fayaz RK, Unnikrishnan JP, Kesavadas C, Sarma SP. Clinical and functional outcome and factors predicting prognosis in osmotic demyelination syndrome (central pontine and/or extrapontine myelinolysis) in 25 patients. J Neurol Neurosurg Psychiatry. 2011;82:326–31.

    PubMed  Google Scholar 

  92. Goebel HH, Zur PH. Central pontine myelinolysis. A clinical and pathological study of 10 cases. Brain. 1972;95:495–504.

    PubMed  CAS  Google Scholar 

  93. Burcar PJ, Norenberg MD, Yarnell PR. Hyponatremia and central pontine myelinolysis. Neurology. 1977;27:223–6.

    PubMed  CAS  Google Scholar 

  94. Endo Y, Oda M, Hara M. Central pontine myelinolysis. A study of 37 cases in 1,000 consecutive autopsies. Acta Neuropathol. 1981;53:145–53.

    PubMed  CAS  Google Scholar 

  95. Lee YJ, Lee SG, Kwon TW, Park KM, Kim SC, Min PC. Neurologic complications after orthotopic liver transplantation including central pontine myelinolysis. Transplant Proc. 1996;28:1674–5.

    PubMed  CAS  Google Scholar 

  96. Sterns RH. The treatment of hyponatremia. Unsafe at any speed. Am Kidney Fund Lett. 1989;6:1–10.

    Google Scholar 

  97. Narins R. Therapy of hyponatremia: does haste make waste. N Engl J Med. 1986;314:1573–5.

    PubMed  CAS  Google Scholar 

  98. Dixon BS, Berl T. The treatment of hyponatremia. In: Bayless T, Brain M, Cherniack R, Decker BC, editors. In current therapy in internal medicine. 1985. p. 1063–68.

    Google Scholar 

  99. Berl T. Treating hyponatremia: damned if we do and damned if we don’t. Kidney Int. 1990;37:1006–18.

    PubMed  CAS  Google Scholar 

  100. Verbalis JG, Goldsmith SR, Greenberg A, Schrier RH, Sterns RW. Hyponatremia treatment guidelines 2007: expert panel recommendations. Am J Med. 2007;120:11.

    Google Scholar 

  101. Sterns RH, Hix JK, Silver S. Treating profound hyponatremia: a strategy for controlled correction. Am J Kidney Dis. 2010;56:774–9.

    PubMed  CAS  Google Scholar 

  102. Sterns RH, Hix JK, Silver S. Treatment of hyponatremia. Curr Opin Nephrol Hypertens. 2010;19:493–8.

    PubMed  Google Scholar 

  103. Decaux G, Musch W, Soupart A. Management of hypotonic hyponatremia. Acta Clin Belg. 2010;65:437–45.

    PubMed  CAS  Google Scholar 

  104. Soupart A, Decaux G. Therapeutic recommendations for management of severe hyponatremia: current concepts on pathogenesis and prevention of neurologic complications. Clin Nephrol. 1996;46:149–69.

    PubMed  CAS  Google Scholar 

  105. Sterns RH. Severe symptomatic hyponatremia: treatment and outcome. A study of 64 cases. Ann Intern Med. 1987;107:656–64.

    PubMed  CAS  Google Scholar 

  106. Verbalis JG, Martinez AJ. Osmotic demyelination is dependent on both rate and magnitude of correction of chronic hyponatremia in rats. Clin Res. 1989;37:586A.

    Google Scholar 

  107. Verbalis JG, Martinez AJ. Determinants of brain myelinolysis following correction of chronic hyponatremia in rats. Vasopressin. 1991;208:539–47.

    CAS  Google Scholar 

  108. Soupart A, Penninckx R, Stenuit A, Perier O, Decaux G. Treatment of chronic hyponatremia in rats by intravenous saline: comparison of rate versus magnitude of correction. Kidney Int. 1992;41:1662–7.

    PubMed  CAS  Google Scholar 

  109. Norenberg MD, Papendick RE. Chronicity of hyponatremia as a factor in experimental myelinolysis. Ann Neurol. 1984;15:544–7.

    PubMed  CAS  Google Scholar 

  110. Lohr JW. Osmotic demyelination syndrome following correction of hyponatremia: association with hypokalemia. Am J Med. 1994;96:408–13.

    PubMed  CAS  Google Scholar 

  111. Jung N-Y, Lee J-H. Secondary tics after osmotic demyelination syndrome involving both the striatum and the cerebral cortex. J Clin Neurosci. 2012;19:179–80.

    PubMed  Google Scholar 

  112. Pietrini V, Mozzani F, Crafa P, Sivelli R, Cademartiri F, Crisi G. Central pontine and extrapontine myelinolysis despite careful correction of hyponatremia: clinical and neuropathological findings of a case. Neurol Sci. 2010;31:227–30.

    PubMed  Google Scholar 

  113. Hawthorne KM, Compton CJ, Vaphiades MS, Roberson GH, Kline LB. Ocular motor and imaging abnormalities of midbrain dysfunction in osmotic demyelination syndrome. J Neuroophthalmol. 2009;29:296–9.

    PubMed  Google Scholar 

  114. Vermetten E, Rutten SJE, Boon PJ, Hofman PAM, Leentjens AFG. Neuropsychiatric and neuropsychological manifestations of central pontine myelinolysis. Gen Hosp Psychiatry. 1999;21:296–302.

    PubMed  CAS  Google Scholar 

  115. Price BH, Mesulam M-M. Behavioral manifestations of central pontine myelinolysis. Arch Neurol. 1987;44:671–3.

    PubMed  CAS  Google Scholar 

  116. Tatia MCL, Crystal CYC, Esther YYL, Amanda M, Leonard SWL. Cognitive and emotional dysfunction after central pontine myelinolysis. Behav Neurol. 2003;14:103–7.

    Google Scholar 

  117. Tosaka M, Kohga H. Extrapontine myelinolysis and behavioral change after transsphenoidal pituitary surgery: case report. Neurosurgery. 1998;43:933–6.

    PubMed  CAS  Google Scholar 

  118. Chalela J, Kattah J. Catatonia due to central pontine and extrapontine myelinolysis: case report. J Neurol Neurosurg Psychiatry. 1999;67:692–3.

    PubMed  CAS  Google Scholar 

  119. Seok JI, Lee DK, Kang MG, Park JH. Neuropsychological findings of extrapontine myelinolysis without central pontine myelinolysis. Behav Neurol. 2007;18:131–4.

    PubMed  Google Scholar 

  120. Chua GC, Sitoh YY, Lim CC, Chua HC, Ng PY. MRI findings in osmotic myelinolysis. Clin Radiol. 2002;57:800–6.

    PubMed  CAS  Google Scholar 

  121. DeWitt LD, Buonanno FS, Kistler JP, Zeffiro T, DeLaPaz RL, Brady TJ, et al. Central pontine myelinolysis. Neurology. 1984;34:570.

    PubMed  CAS  Google Scholar 

  122. Howard SA, Barletta JA, Klufas RA, Saad A, De Girolami U. Osmotic demyelination syndrome1. Radiographics. 2009;29:933–8.

    PubMed  Google Scholar 

  123. Graff-Radford J, Fugate JE, Kaufmann TJ, Mandrekar JN, Rabinstein AA. Clinical and radiologic correlations of central pontine myelinolysis syndrome. Mayo Clin Proc. 2011;86:1063–7.

    PubMed  Google Scholar 

  124. Musana AK, Yale SH. Central pontine myelinolysis: case series and review. WMJ. 2005;104:56–60.

    PubMed  Google Scholar 

  125. Ho VB, Fitz CR, Yoder CC, Geyer CA. Resolving MR features in osmotic myelinolysis (central pontine and extrapontine myelinolysis). Am J Neuroradiol. 1993;14:163–7.

    PubMed  CAS  Google Scholar 

  126. Martin PJ, Young CA. Central pontine myelinolysis: clinical and MRI correlates. Postgrad Med J. 1995;71:430–2.

    PubMed  CAS  Google Scholar 

  127. Newell KL, Kleinschmidt-DeMasters BK. Central pontine myelinolysis at autopsy; a twelve year retrospective analysis. J Neurol Sci. 1996;142:134–9.

    PubMed  CAS  Google Scholar 

  128. Gocht A, Lohler J. Changes in glial cell markers in recent and old demyelinated lesions in central pontine myelinolysis. Acta Neuropathol. 1990;80:46–58.

    PubMed  CAS  Google Scholar 

  129. Ghosh N, DeLuca GC, Esiri MM. Evidence of axonal damage in human acute demyelinating diseases. J Neurol Sci. 2004;222:29–34.

    PubMed  CAS  Google Scholar 

  130. Murase T, Sugimura Y, Takefuji S, Oiso Y, Murata Y. Mechanisms and therapy of osmotic demyelination. Am J Med. 2006;119:S69–73.

    PubMed  CAS  Google Scholar 

  131. Takefuji S, Murase T, Sugimura Y, Takagishi Y, Hayasaka S, Oiso Y, et al. Role of microglia in the pathogenesis of osmotic-induced demyelination. Exp Neurol. 2007;204:88–94.

    PubMed  CAS  Google Scholar 

  132. Baker EA, Tian Y, Adler S, Verbalis JG. Blood-brain barrier disruption and complement activation in the brain following rapid correction of chronic hyponatremia. Exp Neurol. 2000;165:221–30.

    PubMed  CAS  Google Scholar 

  133. Gankam-Kengne F, Soupart A, Pochet R, Brion JP, Decaux G. Minocycline protects against neurologic complications of rapid correction of hyponatremia. J Am Soc Nephrol. 2010;21:2099–108.

    PubMed  CAS  Google Scholar 

  134. Iwama S, Sugimura Y, Suzuki H, Murase T, Ozaki N, Nagasaki H, et al. Time-dependent changes in proinflammatory and neurotrophic responses of microglia and astrocytes in a rat model of osmotic demyelination syndrome. Glia. 2011;59:452–62.

    PubMed  Google Scholar 

  135. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.

    PubMed  CAS  Google Scholar 

  136. Omari A, Kormas N, Field M. Delayed onset of central pontine myelinolysis despite appropriate correction of hyponatraemia. Intern Med J. 2002;32:273–4.

    PubMed  CAS  Google Scholar 

  137. Schuster M, Diekmann S, Klingebiel R, Volk T. Central pontine myelinolysis despite slow sodium rise in a case of severe community-acquired hyponatraemia. Anaesth Intensive Care. 2009;37:117–20.

    PubMed  CAS  Google Scholar 

  138. Ruiz S, Alzieu M, Niquet L, Vergne S, Lathuile D, Campistron J. Hyponatrémie sévère et myélinolyse centropontine: attention aux cofacteurs ! Ann Fr Anesth Reanim. 2009;28:96–9.

    PubMed  CAS  Google Scholar 

  139. Soupart A, Penninckx R, Crenier L, Stenuit A, Perier O, Decaux G. Prevention of brain demyelination in rats after excessive correction of chronic hyponatremia by serum sodium lowering. Kidney Int. 1994;45:193–200.

    PubMed  CAS  Google Scholar 

  140. Soupart A, Penninckx R, Stenuit A, Perier O, Decaux G. Reinduction of hyponatremia improves survival in rats with myelinolysis-related neurologic symptoms. J Neuropathol Exp Neurol. 1996;55:594–601.

    PubMed  CAS  Google Scholar 

  141. Suzuki H, Sugimura Y, Iwama S, Nobuaki O, Nagasaki H, Arima H, et al. Minocycline prevents osmotic demyelination syndrome by inhibiting the activation of microglia. J Am Soc Nephrol. 2010;21:2090–8.

    PubMed  CAS  Google Scholar 

  142. Soupart A, Silver S, Schrooeder B, Sterns R, Decaux G. Rapid (24-hour) reaccumulation of brain organic osmolytes (particularly myo-inositol) in azotemic rats after correction of chronic hyponatremia. J Am Soc Nephrol. 2002;13:1433–41.

    PubMed  CAS  Google Scholar 

  143. Soupart A, Schroeder B, Decaux G. Treatment of hyponatraemia by urea decreases risks of brain complications in rats. Brain osmolyte contents analysis. Nephrol Dial Transplant. 2007;22:1856–63.

    PubMed  CAS  Google Scholar 

  144. Soupart A, Stenuit A, Perier O, Decaux G. Limits of brain tolerance to daily increments in serum sodium in chronically hyponatraemic rats treated with hypertonic saline or urea: advantages of urea. Clin Sci (Lond). 1991;80:77–84.

    Google Scholar 

  145. Van Reeth O, Decaux G. Rapid correction of hyponatraemia with urea may protect against brain damage in rats. Clin Sci (Lond). 1989;77:351–355.

    Google Scholar 

  146. Soupart A, Penninckx R, Stenuit A, Decaux G. Azotemia (48 h) decreases the risk of brain damage in rats after correction of chronic hyponatremia. Brain Res. 2000;852:167–72.

    PubMed  CAS  Google Scholar 

  147. Lee SD, Choi SY, Kwon HM. Distinct cellular pathways for resistance to urea stress and hypertonic stress. Am J Physiol Cell Physiol. 2011;300:C692–6.

    PubMed  Google Scholar 

  148. Tian W, Cohen DM. Urea stress is more akin to EGF exposure than to hypertonic stress in renal medullary cells. Am J Physiol Renal Physiol. 2002;283:F388–98.

    PubMed  CAS  Google Scholar 

  149. Huang WY, Weng WC, Peng TI, Ro LS, Yang CW, Chen KH. Central pontine and extrapontine myelinolysis after rapid correction of hyponatremia by hemodialysis in a uremic patient. Ren Fail. 2007;29:635–8.

    PubMed  Google Scholar 

  150. Loo CS, Lim TO, Fan KS, Murad Z, Suleiman AB. Pontine myelinolysis following correction of hyponatraemia. Med J Malaysia. 1995;50:180–2.

    PubMed  CAS  Google Scholar 

  151. Oo TN, Smith CL, Swan SK. Does uremia protect against the demyelination associated with correction of hyponatremia during hemodialysis? A case report and literature review. Semin Dial. 2003;16:68–71.

    PubMed  Google Scholar 

  152. Tarhan NC, Agildere AM, Benli US, Ozdemir FN, Aytekin C, Can U. Osmotic demyelination syndrome in end-stage renal disease after recent hemodialysis: MRI of the brain. AJR Am J Roentgenol. 2004;182:809–16.

    PubMed  Google Scholar 

  153. Gocht A, Colmant HJ. Central pontine and extrapontine myelinolysis: a report of 58 cases. Clin Neuropathol. 1987;6:262–70.

    PubMed  CAS  Google Scholar 

  154. Adams JH. Central pontine myelinolysis. Proc 4th Int Cong Neuropathol. 1962;3:303–8.

    Google Scholar 

  155. Louis G, Megarbane B, Lavoue S, Lassalle V, Argaud L, Poussel JF, et al. Long-term outcome of patients hospitalized in intensive care units with central or extrapontine myelinolysis*. Crit Care Med. 2012;40:970–2.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Gankam Kengne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kengne, F.G., Decaux, G. (2013). CNS Manifestations of Hyponatremia and Its Treatment. In: Simon, E. (eds) Hyponatremia. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6645-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6645-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6644-4

  • Online ISBN: 978-1-4614-6645-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics