Algebraic Independence of Infinite Products and Their Derivatives

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 43)


For fixed rational integers q > 1, and for non-constant polynomials P with P(0) = 1 and with algebraic coefficients, we consider the infinite product \(A_{q}(z) =\prod _{k\geq 0}P({z}^{{q}^{k} })\). Using Mahler’s transcendence method, we prove results on the algebraic independence over \(\mathbb{Q}\) of the numbers \(A_{q}(\alpha ),A_{q}^\prime(\alpha ),A_{q}^{\prime\prime}(\alpha ),\ldots\) at algebraic points α with 0 < | α | < 1. The basic analytic ingredient of the proof is the hypertranscendence of the function A q (z), and we provide sufficient criteria for it.

Key words

Hypertranscendence Mahler-type functional equations transcendence and algebraic independence Mahler’s method 


  1. 1.
    M. Amou, Algebraic independence of the values of certain functions at a transcendental number. Acta Arith. 59, 71–82 (1991)MathSciNetMATHGoogle Scholar
  2. 2.
    P. Bundschuh, Transcendence and algebraic independence of series related to Stern’s sequence. Int. J. Number Theory 8, 361–376 (2012)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    M. Coons, The transcendence of series related to Stern’s diatomic sequence. Int. J. Number Theory 6, 211–217 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    M. Dekking, Transcendance du nombre de Thue-Morse. C. R. Acad. Sci. Paris Sér. A 285, 157–160 (1977)MathSciNetMATHGoogle Scholar
  5. 5.
    J.H. Loxton, A.J. van der Poorten, Arithmetic properties of the solutions of a class of functional equations. J. Reine Angew. Math. 330, 159–172 (1982)MathSciNetMATHGoogle Scholar
  6. 6.
    K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann. 101, 342–366 (1929)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    K. Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen. Math. Z. 32, 545–585 (1930)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    K. Mahler, On the generating function of the integers with a missing digit. J. Indian Math. Soc. (N.S.) A 15, 33–40 (1951)Google Scholar
  9. 9.
    Ke. Nishioka, A note on differentially algebraic solutions of first order linear difference equations. Aequationes Math. 27, 32–48 (1984)Google Scholar
  10. 10.
    Ke. Nishioka, Ku. Nishioka, Algebraic independence of functions satisfying a certain system of functional equations. Funkcial. Ekvac. 37, 195–209 (1994)Google Scholar
  11. 11.
    Ku. Nishioka, New approach in Mahler’s method. J. Reine Angew. Math. 407, 202–219 (1990)MathSciNetMATHGoogle Scholar
  12. 12.
    Ku. Nishioka, Mahler Functions and Transcendence. LNM, vol 1631 (Springer, Berlin, 1996)Google Scholar
  13. 13.
    G. Szegő, Über Potenzreihen mit endlich vielen verschiedenen Koeffizienten. Sitz.ber. preuß. Akad. Wiss. Math.-Phys. Kl. 1922, 88–91 (1922)Google Scholar
  14. 14.
    Y. Tachiya, Transcendence of certain infinite products. J. Number Theory 125, 182–200 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    T. Toshimitsu, Strongly q-additive functions and algebraic independence. Tokyo J. Math. 21, 107–113 (1998)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany

Personalised recommendations