Skip to main content

Smooth Projective Noise Reduction for Nonlinear Time Series

  • Conference paper
  • First Online:
Topics in Nonlinear Dynamics, Volume 1

Part of the book series: Conference Proceedings of the Society for Experimental Mechanics Series ((CPSEMS,volume 35))

Abstract

Many nonlinear or chaotic time series exhibit an innate broad spectrum, which makes noise reduction difficult. Locally projective noise reduction using proper orthogonal decomposition (POD) is one of the most effective tools. It works for both map-like and continuously sampled time series. However, it only looks at geometrical or topological properties of data and does not take into account temporal characteristics of time series. Here we present a new noise reduction method using smooth orthogonal decomposition (SOD) of bundles of locally reconstructed trajectory strands, which imposes temporal smoothness on the filtered time series. It is shown that SOD based noise reduction significantly outperforms the POD based method for the continuously sampled noisy time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Concept similar to SOD called slow feature analysis has been used for pattern analysis in neural science [1926].

  2. 2.

    You may want to use sod of individual strands to get several samples of smooth subspace basis, and then apply sod to the matrix collecting all the basis to find the dimensionality of global bases.

References

  1. Brocker J, Parlitz U, Ogorzalek M (2002) Nonlinear noise reduction. Proc IEEE 90(5):898–918

    Article  Google Scholar 

  2. Chatterjee A, Cusumano JP, Chelidze D (2002) Optimal tracking of parameter drift in a chaotic system: experiment and theory. J Sound Vib 250(5):877–901

    Article  Google Scholar 

  3. Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7):808–817

    Google Scholar 

  4. Chelidze D, Liu M (2008) Reconstructing slow-time dynamics from fast-time measurements. Philos Trans R Soc A 366:729–3087

    Article  MathSciNet  MATH  Google Scholar 

  5. Chelidze D, Zhou W (2006) Smooth orthogonal decomposition-based vibration mode identification. J Sound Vib 292(3):461–473

    Article  Google Scholar 

  6. Farooq U, Feeny BF (2008) Smooth orthogonal decomposition for modal analysis of randomly excited systems. J Sound Vib 316(1):137–146

    Article  Google Scholar 

  7. Gao J, Sultan H, Hu J, Tung WW (2010) Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: a comparison. IEEE Signal Process Lett 17(3):237–240

    Article  Google Scholar 

  8. Grassberger P (1983 ) Generalized dimensions of strange attractors. Phys Lett A 97(6):227–230

    Article  MathSciNet  Google Scholar 

  9. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349

    Article  MathSciNet  Google Scholar 

  10. Grassberger P, Procaccia V (1983) Measuring the strangeness of strange attractors. Phys D 9(1):189–208

    Article  MathSciNet  MATH  Google Scholar 

  11. Kantz H, Schreiber T (2003) Nonlinear time series analysis, Cambridge University Press, Cambridge

    Book  Google Scholar 

  12. Kantz H, Schreiber T, Hoffmann I, Buzug T, Pfister G, Flepp LG, Simonet J, Badii R, Brun E (1993) Nonlinear noise reduction: a case study on experimental data. Phys Rev E 48(2):1529

    Article  Google Scholar 

  13. Kerschen G, Golinval J-C, Vakakis AF, Bergman LA (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn 41:147–169

    Article  MathSciNet  MATH  Google Scholar 

  14. Kostelich EJ, Schreiber T (1993) Noise reduction in chaotic time-series data: a survey of common methods. Phys Rev E 48(3):1752

    Article  MathSciNet  Google Scholar 

  15. Liebert W, Pawelzik K, Schuster HG (2007) Optimal embeddings of chaotic attractors from topological considerations. Europhys Lett 14(6):521

    Article  MathSciNet  Google Scholar 

  16. Rathinam M, Petzold LR (2003) A new look at proper orthogonal decomposition. SIAM J Numer Anal 41(5):1893–1925

    Article  MathSciNet  MATH  Google Scholar 

  17. Sauer T, Yorke JA, Casdagli M (1991) Embedology. J Stat Phys 65(3):579–616

    Article  MathSciNet  MATH  Google Scholar 

  18. Tikkanen PE (1999) Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal. Biol Cybern 80(4):259–267

    Article  MATH  Google Scholar 

  19. Wiskott L (1998) Learning invariance manifolds. In: Niklasson L, Bodén M, Ziemke T, (eds) Proceedings of the 8th international conference on artificial neural networks, ICANN’98, Skövde, Sept 1998. Perspectives in neural computing. Springer, London, pp 555–560

    Google Scholar 

  20. Wiskott L (1998) Learning invariance manifolds. In: Proceedings of the 5th joint symposium on neural computation, San Diego, vol 8. University of California, 16 May 1998, pp 196–203

    Google Scholar 

  21. Wiskott L (1999) Learning invariance manifolds. In: Proceeding of the computational neuroscience meeting, CNS’98, Santa Barbara, CA, 1999. Special issue of neurocomputing, 26/27:925–932

    Article  Google Scholar 

  22. Wiskott L (1999) Unsupervised learning and generalization of translation invariance in a simple model of the visual system. In: Paaß G (ed) Learning and adaptivity for connectionist models and neural networks, Proceedings Meeting of the GI-Working Group 1.1.2 “Connectionism”, Magdeburg, 29 Sept, pp 56–67, Sankt Augustin, 1999. GMD-Forschungszentrum Informationstechnik GmbH. GMD Report 59

    Google Scholar 

  23. Wiskott L (2000) Unsupervised learning of invariances in a simple model of the visual system. In: Proceeding of the 9th annual computational neuroscience meeting, CNS 2000, Brugge, 16–20 July 2000, p 157

    Google Scholar 

  24. Wiskott L (2001) Unsupervised learning of invariances in a simple model of the visual system. In: Mumford D, Morel J-M, C. von der Malsburg (eds) Proceedings of the mathematical, computational and biological study of vision, Oberwolfach, Mathematisches Forschungsinstitut, 4–10 Nov 2001, pp 21–22

    Google Scholar 

  25. Wiskott L (2006) Is slowness a learning principle of visual cortex? In: Proceedings of the japan-germany symposium on computational neuroscience, Saitama, RIKEN Brain Science Institute, 1–4 Feb 2006, p 25

    Google Scholar 

  26. Wiskott L, Berkes P (2003) Is slowness a learning principle of the visual cortex? In: Proceeding of the jahrestagung der deutschen zoologischen gesellschaft, Berlin, 9–13 June 2003. Special issue of zoology, 106(4):373–382

    Google Scholar 

  27. Wolf A (1986) Quantifying chaos with lyapunov exponents. In: Chaos, pp 273–290

    Google Scholar 

  28. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining lyapunov exponents from a time series. Phys D 16(3):285–317

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is based upon work supported by the National Science Foundation under Grant No. 1100031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chelidze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Chelidze, D. (2013). Smooth Projective Noise Reduction for Nonlinear Time Series. In: Kerschen, G., Adams, D., Carrella, A. (eds) Topics in Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6570-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6570-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6569-0

  • Online ISBN: 978-1-4614-6570-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics