Endocrine Myopathies

  • Michael R. Douglas
  • Zaki Hassan-Smith
  • Robert L. Ruff


Endocrine myopathies may present in a wide range of clinical presentations. This chapter highlights the underlying pathophysiology of the most common endocrinopathies as well as the iatrogenic disorders associated with use of glucocorticoids, with a particular emphasis on their clinical presentation, relevant investigations, treatment, and prognosis.


Neurology of Endocrine Disease Endocrine Myopathies Glucocorticoid Excess Hyperthyroidism Hypothyroidism Addison’s Disease Vitamin D 


  1. 1.
    Kaminski HJ, Ruff RL. Neurologic complications of endocrine diseases. Neurol Clin. 1989;7:489–508.PubMedGoogle Scholar
  2. 2.
    Douglas M. Neurology of endocrine disease. Clin Med. 2010;10(4):387–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Rebuff’e-Scrive M, Krotkiewski M, Elfverson J, Bjorntorp P. Muscle adipose tissue morphology and metabolism in Cushing’s syndrome. J Clin Endocrinol Metab. 1988;67:1122–8.CrossRefGoogle Scholar
  4. 4.
    Morgan SA, Sherlock M, Gathercole LL, et al. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle. Diabetes. 2009;58(11):2506–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Beato M, Klug J. Steroid hormone receptors: an update. Hum Reprod Update. 2000;6(3):225–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Pereira RM, Freire de Carvalho J. Glucocorticoid-induced myopathy. Joint Bone Spine. 2011;78(1):41–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Dirks-Naylor AJ, Griffiths CL. Glucocorticoid-induced apoptosis and cellular mechanisms of myopathy. J Steroid Biochem Mol Biol. 2009;117(1–3):1–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Sun L, Trausch-Azar JS, Muglia LJ, Schwartz AL. Glucocorticoids differentially regulate degradation of MyoD and Id1 by N-terminal ubiquitination to promote muscle protein catabolism. Proc Natl Acad Sci U S A. 2008;105(9):3339–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Jogo M, Shiraishi S, Tamura TA. Identification of MAFbx as a myogenin-engaged F-box protein in SCF ubiquitin ligase. FEBS Lett. 2009;583(17):2715–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Imae M, Fu Z, Yoshida A, Noguchi T, Kato H. Nutritional and hormonal factors control the gene expression of FoxOs, the mammalian homologues of DAF-16. J Mol Endocrinol. 2003;30(2):253–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412.PubMedCrossRefGoogle Scholar
  12. 12.
    Waddell DS, Baehr LM, van den Brandt J, et al. The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab. 2008;295(4):E785–97.PubMedCrossRefGoogle Scholar
  13. 13.
    Clarke BA, Drujan D, Willis MS, et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab. 2007;6(5):376–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Baehr LM, Furlow JD, Bodine SC. Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol. 2011;589(Pt 19):4759–76.PubMedGoogle Scholar
  15. 15.
    Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR. Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem. 2006;281(51):39128–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Shah OJ, Anthony JC, Kimball SR, Jefferson LS. 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab. 2000;279(4):E715–29.PubMedGoogle Scholar
  17. 17.
    Biedasek K, Andres J, Mai K, et al. Skeletal muscle 11beta-HSD1 controls glucocorticoid-induced proteolysis and expression of E3 ubiquitin ligases atrogin-1 and MuRF-1. PLoS One. 2011;6(1):e16674.PubMedCrossRefGoogle Scholar
  18. 18.
    Verhees KJ, Schols AM, Kelders MC, Op den Kamp CM, van der Velden JL, Langen RC. Glycogen synthase kinase-3beta is required for the induction of skeletal muscle atrophy. Am J Physiol Cell Physiol. 2011;301(5):C995–1007.PubMedCrossRefGoogle Scholar
  19. 19.
    Gonnella P, Alamdari N, Tizio S, Aversa Z, Petkova V, Hasselgren PO. C/EBPbeta regulates dexamethasone-induced muscle cell atrophy and expression of atrogin-1 and MuRF1. J Cell Biochem. 2011;112(7):1737–48.PubMedCrossRefGoogle Scholar
  20. 20.
    Schakman O, Gilson H, de Coninck V, et al. Insulin-like growth factor-I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid-treated rats. Endocrinology. 2005;146(4):1789–97.PubMedCrossRefGoogle Scholar
  21. 21.
    Li BG, Hasselgren PO, Fang CH. Insulin-like growth factor-I ­inhibits dexamethasone-induced proteolysis in cultured L6 myotubes through PI3K/Akt/GSK-3beta and PI3K/Akt/mTOR-dependent mechanisms. Int J Biochem Cell Biol. 2005;37(10):2207–16.PubMedCrossRefGoogle Scholar
  22. 22.
    Rommel C, Bodine SC, Clarke BA, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol. 2001;3(11):1009–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab. 2004;287(4):E591–601.PubMedCrossRefGoogle Scholar
  24. 24.
    Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403.PubMedCrossRefGoogle Scholar
  25. 25.
    Hu Z, Wang H, Lee IH, Du J, Mitch WE. Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice. J Clin Invest. 2009;119(10):3059–69.PubMedGoogle Scholar
  26. 26.
    Horber FF, Haymond MW. Human growth hormone prevents the protein catabolic side effects of prednisone in humans. J Clin Invest. 1990;86(1):265–72.PubMedCrossRefGoogle Scholar
  27. 27.
    McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. 1997;94(23):12457–61.PubMedCrossRefGoogle Scholar
  28. 28.
    McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Gilson H, Schakman O, Combaret L, et al. Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology. 2007;148(1):452–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Carlson CJ, Booth FW, Gordon SE. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol. 1999;277(2 Pt 2):R601–6.PubMedGoogle Scholar
  31. 31.
    Wojcik S, Nogalska A, Engel WK, Askanas V. Myostatin and its precursor protein are increased in the skeletal muscle of patients with Type-II muscle fibre atrophy. Folia Morphol. 2008;67(1):6–12.Google Scholar
  32. 32.
    Lebrasseur NK. Building muscle, browning fat and preventing obesity by inhibiting myostatin. Diabetologia. 2012;55(1):13–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Tischler M, Henriksen E, Cook P. Role of glucocorticoids in increased muscle glutamine production in starvation. Muscle Nerve. 1988;11:752–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Santidrian S, Moreyra H, Munro H, Young V. Effect of corticosterone and its route of administration on muscle protein breakdown, measured in vivo by urinary excretion of N-methylhistidine in rats: response to different levels of dietary protein and energy. Metabolism. 1981;30:798.PubMedCrossRefGoogle Scholar
  35. 35.
    Almon R, Dubois D. Fiber-type discrimination in disuse and glucocorticoid-induced atrophy. Med Sci Sports Exerc. 1990;22:304–11.PubMedCrossRefGoogle Scholar
  36. 36.
    Jaspers S, Tischler M. Role of glucocorticoids in the response of rat leg muscles to reduced activity. Muscle Nerve. 1986;9:554–61.PubMedCrossRefGoogle Scholar
  37. 37.
    DuBois D, Almon R. Disuse atrophy of skeletal muscle is associated with an increase in number of glucocorticoid receptors. Endocrinology. 1980;107:1649.PubMedCrossRefGoogle Scholar
  38. 38.
    Hennig R, Lømo T. Firing patterns of motor units in normal rats. Nature. 1985;314:164–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Falduto M, Czerwinski S, Hickson R. Glucocorticoid-induced muscle atrophy prevention by exercise in fast-twitch fibers. J Appl Physiol. 1990;69:1058–62.PubMedGoogle Scholar
  40. 40.
    Braith R, Welsch M, Mills RJ, Keller J, Pollock M. Resistance exercise prevents glucocorticoid-induced myopathy in heart transplant recipients. Med Sci Sports Exerc. 1998;30(4):483–9.PubMedCrossRefGoogle Scholar
  41. 41.
    LaPier TK. Glucocorticoid-induced muscle atrophy. The role of exercise in treatment and prevention. J Cardiopulm Rehabil. 1997;17(2):76–84.PubMedCrossRefGoogle Scholar
  42. 42.
    Prineas J, Hall R, Barwick D, Watson A. Myopathy associated with pigmentation following adrenalectomy for Cushing’s syndrome. Q J Med. 1968;37:63.PubMedGoogle Scholar
  43. 43.
    Muller R, Kugelberg E. Myopathy in Cushing’s syndrome. J Neurol Neurosurg Psychiatry. 1959;22:314.PubMedCrossRefGoogle Scholar
  44. 44.
    Germuth F, Nedzel G, Ottinger B, et al. Anatomic and histologic changes in rabbits with experimental hypersensitivity treated with compound E and ACTH. Proc Soc Exp Biol Med. 1951;76:177.PubMedCrossRefGoogle Scholar
  45. 45.
    Birnberger K, Rüdel R, Struppleer A. ACTH and neuromuscular transmission: electrophysiological in vitro investigation of the effects of corticotropin and an ACTH fragment on neuromuscular transmission. Ann Neurol. 1977;1:270.PubMedCrossRefGoogle Scholar
  46. 46.
    Santidrian S, Young V. Effect of androgens on the rate of muscle protein breakdown in rats treated with glucocorticoids. Reproduction. 1980;4:331.Google Scholar
  47. 47.
    Capaccio J, Kurowski T, Czerwinski S, Chatterton R, Hickson R. Testosterone fails to prevent skeletal muscle atrophy from glucocorticoids. J Appl Physiol. 1987;63:328–34.PubMedGoogle Scholar
  48. 48.
    Robinzon B, Cutolo M. Should dehydroepiandrosterone replacement therapy be provided with glucocorticoids? Rheumatology (Oxford). 1999;38(6):488–95.CrossRefGoogle Scholar
  49. 49.
    Sakai Y, Kobayashi K, Twata N. Effects of an anabolic steroid and vitamin D complex upon myopathy-induced by corticosteroids. Eur J Pharmacol. 1978;52:353.PubMedCrossRefGoogle Scholar
  50. 50.
    Kaminski H, Ruff RL. Endocrine myopathies (hyper- and hypofunction of adrenal, thyroid, pituitary, and parathyroid glands and iatrogenic corticosteroid myopathy). In: Engel A, Franzini-Armstrong C, editors. Myology. New York: McGraw-Hill; 1994. p. 1726–53.Google Scholar
  51. 51.
    Cushing H. Basophilic adenomas of the pituitary body and their clinical manifestations. Bull Johns Hopkins Hosp. 1932;50:137.Google Scholar
  52. 52.
    Shee C. Risk factors for hydrocortisone myopathy in acute severe asthma. Respir Med. 1990;84:229–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Ruff RL, Weissman J. Endocrine myopathies. Neurol Clin. 1988;6(3):575–92.PubMedGoogle Scholar
  54. 54.
    Akkoca O, Mungan D, Karabiyikoglu G, Misirligil Z. Inhaled and systemic corticosteroid therapies: do they contribute to inspiratory muscle weakness in asthma? Respiration. 1999;66(4):332–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Rothstein J, Delitto A, Sinacore D, Rose S. Muscle function in rheumatic disease patients treated with corticosteroids. Muscle Nerve. 1983;6:128–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Bunch T, Worthington J, Combs J, Ilstrup D, Engel A. Azathioprine with prednisone for polymyositis: a controlled, clinical trial. Ann Intern Med. 1980;92:365.PubMedCrossRefGoogle Scholar
  57. 57.
    Askari A, Vignos P, Moskowitz R. Steroid myopathy in connective tissue disease. Am J Med. 1976;61:485.PubMedCrossRefGoogle Scholar
  58. 58.
    Minetto MA, Lanfranco F, Botter A, et al. Do muscle fiber conduction slowing and decreased levels of circulating muscle proteins represent sensitive markers of steroid myopathy? A pilot study in Cushing’s disease. Eur J Endocrinol. 2011;164(6):985–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Minetto MA, Botter A, Lanfranco F, Baldi M, Ghigo E, Arvat E. Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects. J Clin Endocrinol Metab. 2010;95(4):1663–71.PubMedCrossRefGoogle Scholar
  60. 60.
    Nieman LK, Biller BM, Findling JW, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40.PubMedCrossRefGoogle Scholar
  61. 61.
    Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006;367(9522):1605–17.PubMedCrossRefGoogle Scholar
  62. 62.
    Engel A. Electron microscopic observations in thyrotoxic and corticosteroid myopathies. Mayo Clin Proc. 1966;41:785.PubMedGoogle Scholar
  63. 63.
    Hassan-Smith ZK, Sherlock M, Reulen RC, et al. Outcome of Cushing’s disease following transsphenoidal surgery in a single ­center over 20 years. J Clin Endocrinol Metab. 2012;97(4):1194–201.PubMedCrossRefGoogle Scholar
  64. 64.
    Robinson C, Robinson H. Triamcinolone in rheumatoid arthritis. Can Med Assoc J. 1959;80:245.PubMedGoogle Scholar
  65. 65.
    Catley M. Dissociated steroids. ScientificWorldJournal. 2007;7:421–30.PubMedCrossRefGoogle Scholar
  66. 66.
    Newton R, Holden NS. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor? Mol Pharmacol. 2007;72(4):799–809.PubMedCrossRefGoogle Scholar
  67. 67.
    Sunada Y. Myostatin blockade therapy for muscular atrophy. Brain Nerve. 2011;63(11):1271–7.PubMedGoogle Scholar
  68. 68.
    Morgan SA, Tomlinson JW. 11beta-hydroxysteroid dehydrogenase type 1 inhibitors for the treatment of type 2 diabetes. Expert Opin Investig Drugs. 2010;19(9):1067–76.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhao W, Pan J, Zhao Z, Wu Y, Bauman WA, Cardozo CP. Testosterone protects against dexamethasone-induced muscle atrophy, protein degradation and MAFbx upregulation. J Steroid Biochem Mol Biol. 2008;110(1–2):125–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Wu Y, Zhao W, Zhao J, et al. REDD1 is a major target of testosterone action in preventing dexamethasone-induced muscle loss. Endocrinology. 2010;151(3):1050–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Yin HN, Chai JK, Yu YM, et al. Regulation of signaling pathways downstream of IGF-I/insulin by androgen in skeletal muscle of glucocorticoid-treated rats. J Trauma. 2009;66(4):1083–90.PubMedCrossRefGoogle Scholar
  72. 72.
    Yamamoto D, Ikeshita N, Matsubara T, et al. GHRP-2, a GHS-R agonist, directly acts on myocytes to attenuate the dexamethasone-induced expressions of muscle-specific ubiquitin ligases, Atrogin-1 and MuRF1. Life Sci. 2008;82(9–10):460–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Pellegrino MA, D’Antona G, Bortolotto S, et al. Clenbuterol antagonizes glucocorticoid-induced atrophy and fibre type transformation in mice. Exp Physiol. 2004;89(1):89–100.PubMedCrossRefGoogle Scholar
  74. 74.
    Goncalves DA, Lira EC, Baviera AM, et al. Mechanisms involved in 3′,5′-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle. Endocrinology. 2009;150(12):5395–404.PubMedCrossRefGoogle Scholar
  75. 75.
    Ryall JG, Lynch GS. The potential and the pitfalls of beta-­adrenoceptor agonists for the management of skeletal muscle wasting. Pharmacol Ther. 2008;120(3):219–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Yamamoto D, Maki T, Herningtyas EH, et al. Branched-chain amino acids protect against dexamethasone-induced soleus muscle atrophy in rats. Muscle Nerve. 2010;41(6):819–27.PubMedCrossRefGoogle Scholar
  77. 77.
    Menezes LG, Sobreira C, Neder L, Rodrigues-Junior AL, Martinez JA. Creatine supplementation attenuates corticosteroid-induced muscle wasting and impairment of exercise performance in rats. J Appl Physiol. 2007;102(2):698–703.PubMedCrossRefGoogle Scholar
  78. 78.
    Barel M, Perez OA, Giozzet VA, Rafacho A, Bosqueiro JR, do Amaral SL. Exercise training prevents hyperinsulinemia, muscular glycogen loss and muscle atrophy induced by dexamethasone treatment. Eur J Appl Physiol. 2010;108(5):999–1007.PubMedCrossRefGoogle Scholar
  79. 79.
    Miyazaki M, Esser KA. Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol. 2009;106(4):1367–73.PubMedCrossRefGoogle Scholar
  80. 80.
    Chakera AJ, Vaidya B. Addison disease in adults: diagnosis and management. Am J Med. 2010;123(5):409–13.PubMedCrossRefGoogle Scholar
  81. 81.
    Santiago AH, Ratzan S. Acute adrenal crisis in an asthmatic child treated with inhaled fluticasone proprionate. Int J Pediatr Endocrinol. 2010;2010:pii: 749239.Google Scholar
  82. 82.
    Loaiza-Bonilla A, Sullivan T, Harris RK. Lost in the mist: acute adrenal crisis following intranasal fluticasone propionate overuse. Case Rep Med. 2010;2010:pii: 846534.Google Scholar
  83. 83.
    Mor F, Green P, Wysenbeek A. Myopathy in Addison’s disease. Ann Rheum Dis. 1987;46:81–3.PubMedCrossRefGoogle Scholar
  84. 84.
    Christiansen JJ, Djurhuus CB, Gravholt CH, et al. Effects of cortisol on carbohydrate, lipid, and protein metabolism: studies of acute cortisol withdrawal in adrenocortical failure. J Clin Endocrinol Metab. 2007;92(9):3553–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Green G, Chenoweth M, Dunn A. Adrenal glucocorticoid permissive regulation of muscle glycogenolysis: action of protein phosphatase(s) and its inhibitor(s). Proc Natl Acad Sci. 1980;77:5711.PubMedCrossRefGoogle Scholar
  86. 86.
    Baxter J. Glucocorticoid hormone action. Pharmacol Ther B. 1976;2:605.PubMedGoogle Scholar
  87. 87.
    Kamoi K, Tamura T, Tanaka K, Ishibashi M, Yamaji T. Hyponatremia and osmoregulation of thirst and vasopressin secretion in patients with adrenal insufficiency. J Clin Endocrinol Metab. 1993;77(6):1584–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Nordsborg N, Goodmann C, McKenna MJ, Bangsbo J. Dexamethasone up-regulates skeletal muscle maximal Na+, K+ pump activity by muscle group specific mechanisms in humans. J Physiol. 2005;567(Pt 2):583–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Ruff RL, Simoncini L, Stühmer W. Slow sodium channel inactivation in mammalian muscle: a possible role in regulating excitability. Muscle Nerve. 1988;11:502–10.PubMedCrossRefGoogle Scholar
  90. 90.
    Ruff RL, Gordon AM. Disorders of muscle: the periodic paralyses. In: Andreoli TE, Fanestil DD, Hoffman JF, Schultz SG, editors. Physiology of membrane disorders. New York: Plenum Medical Book Company; 1986. p. 59–73.Google Scholar
  91. 91.
    Addison T. On the constitutional and local effects of diseases of the supra renal capsules. London: New Sydenham Society; 1868.Google Scholar
  92. 92.
    Gallavan M, Steegman A. Simmonds’ disease (anterior hypophyseal insufficiency). Arch Intern Med. 1937;59:865–82.CrossRefGoogle Scholar
  93. 93.
    Anderson IA, Lyall A. Addison’s disease due to suprarenal atrophy. Lancet. 1937;i:1039–43.CrossRefGoogle Scholar
  94. 94.
    Blandford RL, Samanta AK, Burden AC, Rosenthal FD. Muscle contractures associated with glucocorticoid deficiency. Br Med J (Clin Res Ed). 1985;291(6488):127–8.CrossRefGoogle Scholar
  95. 95.
    Nerup J. Addison’s disease – clinical studies. A report of 108 cases. Acta Endocrinol (Copenh). 1974;76(1):127–41.Google Scholar
  96. 96.
    Mier A, Laroche C, Wass J, Green M. Respiratory muscle weakness in Addison’s disease. BMJ. 1988;297:457–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Dumas P, Archambeaud-Mouveroux F, Vallat J, Varussad D, Hugon J, Dumas M. Myasthenia gravis associated with adrenocortical insufficiency. Report of two cases. J Neurol. 1985;232:354–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Skedros JG, Kiser CJ, Mendenhall SD. Prolonged dyspnea after interscalene block: attributed to undiagnosed Addison’s disease and Myasthenia Gravis. Case Rep Med. 2011;2011:968181.PubMedGoogle Scholar
  99. 99.
    Seker M, Gozu HI, Oven Ustaalioglu BB, et al. Myasthenia gravis and autoimmune Addison disease in a patient with thymoma. Clin Lung Cancer. 2009;10(5):367–70.PubMedCrossRefGoogle Scholar
  100. 100.
    Sasaki M, Yuzawa M, Saito T, et al. Clinical and laboratory features of hyponatremia-induced myopathy. Clin Exp Nephrol. 2007;11(4):283–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Egan JJ, Davies AJ, Jones MK. Hyponatraemic rhabdomyolysis in Addison’s disease. Postgrad Med J. 1994;70(829):830–2.PubMedCrossRefGoogle Scholar
  102. 102.
    Jolobe O, Sen I. Hyponatraemic rhabdomyolysis in Addison’s disease. Postgrad Med J. 1995;71(839):574.PubMedCrossRefGoogle Scholar
  103. 103.
    Oki K, Noda K, Kondo K, Koide J. Rhabdomyolysis associated with hyponatremia and adrenal insufficiency. Eur J Neurol. 2006;13(11):e8–9.PubMedCrossRefGoogle Scholar
  104. 104.
    de Witte SA, Bonnet F, Morlat P, Beylot J. Rhabdomyolysis as a consequence of adrenal insufficiency. Am J Med. 2003;114(2):160.PubMedCrossRefGoogle Scholar
  105. 105.
    van der Sande JJ, van Seters AP, Wintzen AR. Dementia with contractures’ as presenting signs of secondary adrenocortical insufficiency. Clin Neurol Neurosurg. 1986;88(1):53–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Shapiro MS, Trebich C, Shilo L, Shenkman L. Myalgias and muscle contractures as the presenting signs of Addison’s disease. Postgrad Med J. 1988;64(749):222–3.PubMedCrossRefGoogle Scholar
  107. 107.
    Odagaki T, Noguchi Y, Fukui T. Flexion contractures of the legs as the initial manifestation of adrenocortical insufficiency. Intern Med. 2003;42(8):710–3.PubMedCrossRefGoogle Scholar
  108. 108.
    Syriou V, Moisidis A, Tamouridis N, Alexandraki KI, Anapliotou M. Isolated adrenocorticotropin deficiency and flexion contractures syndrome. Hormones. 2008;7(4):320–4.PubMedGoogle Scholar
  109. 109.
    Berger J, Herregods P, Verhelst J, Stassijns G, Chappel R. Flexion contractures in secondary adrenal insufficiency. Clin Rheumatol. 2010;29(1):115–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Harbuz V, Bihan H, Salama J, Reach G, Cohen R. Flexion contractures possibly reflect the existence of hypocortisolism: two case reports. J Neurol. 2010;257(7):1129–33.PubMedCrossRefGoogle Scholar
  111. 111.
    Aumaitre O, Thieblot P, Dordain G. Abdomino-crural contracture disclosing panhypopituitarism with malnutrition. Ann Med Interne. 1982;133(8):583–7.Google Scholar
  112. 112.
    Abbas DH, Schlagenhauff RE, Strong HE. Polyradiculoneuropathy in Addison’s disease. Case report and review of literature. Neurology. 1977;27(5):494–5.PubMedCrossRefGoogle Scholar
  113. 113.
    Derish M, Eckert K, Chin C. Reversible cardiomyopathy in a child with Addison’s disease. Intensive Care Med. 1996;22(5):460–3.PubMedCrossRefGoogle Scholar
  114. 114.
    Conwell LS, Gray LM, Delbridge RG, Thomsett MJ, Batch JA. Reversible cardiomyopathy in paediatric Addison’s disease – a cautionary tale. J Pediatr Endocrinol Metab. 2003;16(8):1191–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Afzal A, Khaja F. Reversible cardiomyopathy associated with Addison’s disease. Can J Cardiol. 2000;16(3):377–9.PubMedGoogle Scholar
  116. 116.
    Peter M, Viemann M, Partsch CJ, Sippell WG. Congenital adrenal hypoplasia: clinical spectrum, experience with hormonal diagnosis, and report on new point mutations of the DAX-1 gene. J Clin Endocrinol Metab. 1998;83(8):2666–74.PubMedCrossRefGoogle Scholar
  117. 117.
    Artuch R, Pavia C, Playan A, et al. Multiple endocrine involvement in two pediatric patients with Kearns-Sayre syndrome. Horm Res. 1998;50(2):99–104.PubMedCrossRefGoogle Scholar
  118. 118.
    Boles RG, Roe T, Senadheera D, Mahnovski V, Wong LJ. Mitochondrial DNA deletion with Kearns Sayre syndrome in a child with Addison disease. Eur J Pediatr. 1998;157(8):643–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Vilchez J, Cabello A, Bendito J, Villarroya T. Hyperkalemic paralysis, neuropathy, and persistent motor neuron discharges at rest in Addison’s disease. J Neurol Neurosurg Psychiatry. 1980;43:818.PubMedCrossRefGoogle Scholar
  120. 120.
    Ptacek L, Tawil R, Griggs R, et al. Sodium channel mutations in acetazolamide-responsive myotonia congenita, paramyotonia congenita, and hyperkalemic periodic paralysis. Neurology. 1994;44(8):1500–3.PubMedCrossRefGoogle Scholar
  121. 121.
    Jakobi JM, Killinger DW, Wolfe BM, Mahon JL, Rice CL. Quadriceps muscle function and fatigue in women with Addison’s disease. Muscle Nerve. 2001;24(8):1040–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Kinoshita H, Mizutani S, Sei K, et al. Musculoskeletal symptoms and neurological investigations in adrenocortical insufficiency: a case report and literature review. J Musculoskelet Neuronal Interact. 2010;10(4):281–5.PubMedGoogle Scholar
  123. 123.
    Pontecorvi A, Lakshmanan M, Robbins J. Intracellular transport of 3,5,3′-triiodo-L-thyronine in rat skeletal myoblasts. Endocrinology. 1987;121:2145–52.PubMedCrossRefGoogle Scholar
  124. 124.
    Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31(2):139–70.PubMedCrossRefGoogle Scholar
  125. 125.
    Davis PJ, Leonard JL, Davis FB. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol. 2008;29(2):211–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Incerpi S, Luly P, De Vito P, Farias RN. Short-term effects of thyroid hormones on the Na/H antiport in L-6 myoblasts: high molecular specificity for 3,3′,5-triiodo-L-thyronine. Endocrinology. 1999;140(2):683–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Blanchet E, Bertrand C, Annicotte JS, et al. Mitochondrial T3 receptor p43 regulates insulin secretion and glucose homeostasis. FASEB J. 2012;26(1):40–50.PubMedCrossRefGoogle Scholar
  128. 128.
    Visser WE, Heemstra KA, Swagemakers SM, et al. Physiological thyroid hormone levels regulate numerous skeletal muscle transcripts. J Clin Endocrinol Metabol. 2009;94(9):3487–96.CrossRefGoogle Scholar
  129. 129.
    Lithell H, Vessby B, Selinus I, Daahlberg P. High muscle lipoprotein lipase activity in thyrotoxic patients. Acta Endocrinol (Copenh). 1985;109:227–31.Google Scholar
  130. 130.
    Satoyoshi E, Murakami K, Kowa H, et al. Myopathy in thyrotoxicosis: with special emphasis on an effect of potassium ingestion on serum and urinary creatine. Neurology. 1963;13:645.PubMedCrossRefGoogle Scholar
  131. 131.
    Duyff RF, Van den Bosch J, Laman DM, van Loon BJ, Linssen WH. Neuromuscular findings in thyroid dysfunction: a prospective clinical and electrodiagnostic study. J Neurol Neurosurg Psychiatry. 2000;68(6):750–5.PubMedCrossRefGoogle Scholar
  132. 132.
    McElvaney G, Wilcox P, Fairbarn M, Hilliam C, Wilkins G. Respiratory muscle weakness and dyspnea in thyrotoxic patients. Am Rev Respir Dis. 1990;141:1221–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Bennett W, Huston D. Rhabdomyolysis in thyroid storm. Am J Med. 1984;77:733–5.PubMedCrossRefGoogle Scholar
  134. 134.
    Hardiman O, Molloy F, Brett F, Farrell M. Inflammatory myopathy in thyrotoxicosis. Neurology. 1997;48(2):339–41.PubMedCrossRefGoogle Scholar
  135. 135.
    Wang H, Li H, Kai C, Deng J. Polymyositis associated with hypothyroidism or hyperthyroidism: two cases and review of the literature. Clin Rheumatol. 2011;30(4):449–58.PubMedCrossRefGoogle Scholar
  136. 136.
    Kiessling W, Pfluehaupt K, Ricker K, Haubitz I, Mertens H. Thyroid function and circulating antithyroid antibodies in myasthenia gravis. Neurology. 1981;31:771.PubMedCrossRefGoogle Scholar
  137. 137.
    Bahn RS, Heufelder AE. Pathogenesis of Graves ophthalmopathy. N Engl J Med. 1993;91:1411–9.Google Scholar
  138. 138.
    Weetman A. Eyeing up Graves’ ophthalmopathy. Mol Cell Endocrinol. 1997;126:113–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Carter JA, Utiger RD. The ophthalmopathy of Graves’ disease. Annu Rev Med. 1992;43:487–95.PubMedCrossRefGoogle Scholar
  140. 140.
    Kuriyan AE, Phipps RP, O’Loughlin CW, Feldon SE. Improvement of thyroid eye disease following treatment with the cyclooxygenase-2 selective inhibitor celecoxib. Thyroid. 2008;18(8):911–4.PubMedCrossRefGoogle Scholar
  141. 141.
    Douglas RS, Gupta S. The pathophysiology of thyroid eye disease: implications for immunotherapy. Curr Opin Ophthalmol. 2011;22(5):385–90.PubMedCrossRefGoogle Scholar
  142. 142.
    Wiersinga WM. Autoimmunity in Graves’ ophthalmopathy: the result of an unfortunate marriage between TSH receptors and IGF-1 receptors? J Clin Endocrinol Metabol. 2011;96(8):2386–94.CrossRefGoogle Scholar
  143. 143.
    Wiersinga WM. Management of Graves’ ophthalmopathy. Nat Clin Pract Endocrinol Metab. 2007;3(5):396–404.PubMedCrossRefGoogle Scholar
  144. 144.
    Silkiss RZ, Reier A, Coleman M, Lauer SA. Rituximab for thyroid eye disease. Ophthal Plast Reconstr Surg. 2010;26(5):310–4.PubMedCrossRefGoogle Scholar
  145. 145.
    Jacobson DM. Dysthyroid orbitopathy. Semin Neurol. 2000;20(1):43–54.PubMedCrossRefGoogle Scholar
  146. 146.
    Satoyoshi E, Murakami K, Koine H, Kinoshita M, Nishiyama Y. Periodic paralysis in hyperthyroidism. Neurology. 1963;13:746.PubMedCrossRefGoogle Scholar
  147. 147.
    Reisin RC, Martinez O, Moran M, et al. Thyrotoxic periodic paralysis in caucasians. Report of 8 cases. Neurologia. 2000;15(6):222–5.PubMedGoogle Scholar
  148. 148.
    Miller D, Delcastillo J, Tsang T. Severe hypokalemia in thyrotoxic periodic paralysis. Am J Emerg Med. 1989;7:584–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Manoukian MA, Foote JA, Crapo LM. Clinical and metabolic features of thyrotoxic periodic paralysis in 24 episodes. Arch Intern Med. 1999;159(6):601–6.PubMedCrossRefGoogle Scholar
  150. 150.
    Ryan DP, da Silva MR, Soong TW, et al. Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell. 2010;140(1):88–98.PubMedCrossRefGoogle Scholar
  151. 151.
    Puwanant A, Ruff RL. INa and IKir are reduced in Type 1 hypokalemic and thyrotoxic periodic paralysis. Muscle Nerve. 2010;42(3):315–27.PubMedCrossRefGoogle Scholar
  152. 152.
    Maciel RM, Lindsey SC, Dias da Silva MR. Novel etiopathophysiological aspects of thyrotoxic periodic paralysis. Nat Rev Endocrinol. 2011;7(11):657–67.PubMedCrossRefGoogle Scholar
  153. 153.
    Wayne EJ. The diagnosis of thyrotoxicosis. Br Med J. 1954;1(4859):411–9.PubMedCrossRefGoogle Scholar
  154. 154.
    Puvanendran K, Cheah J, Naganthan N, Wong P. Thyrotoxic myopathy: a clinical and quantitative analytic electromyographic study. J Neurol Sci. 1979;42:441.PubMedCrossRefGoogle Scholar
  155. 155.
    Celsing F, Blomstrand E, Melichna J, et al. Effect of hyperthyroidism on fibre-type composition, fibre area, glycogen content and enzyme activity in human skeletal muscle. Clin Physiol. 1986;6:171–81.PubMedCrossRefGoogle Scholar
  156. 156.
    Harvard C, Cambell E, Ross H, Spence A. Electromyographic and histological findings in the muscles of patients with thyrotoxicosis. Q J Med. 1963;32:145.Google Scholar
  157. 157.
    Klein I, Ojamaa K. Thyroid(neuro)myopathy. Lancet. 2000;356:614.PubMedCrossRefGoogle Scholar
  158. 158.
    Wang Y. Lung function and respiratory muscle strength after propranolol in thyrotoxicosis. Aust N Z J Med. 1986;16:496–500.PubMedCrossRefGoogle Scholar
  159. 159.
    Helfand M, Crapo LM. Screening for thyroid disease. Ann Intern Med. 1990;112(11):840–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Sawin CT, Chopra D, Azizi F, Mannix JE, Bacharach P. The aging thyroid. Increased prevalence of elevated serum thyrotropin levels in the elderly. JAMA. 1979;242(3):247–50.PubMedCrossRefGoogle Scholar
  161. 161.
    Argov Z, Renshaw P, Boden B, Winokur A, Bank W. Effects of thyroid hormones on skeletal muscle bioenergetics. In vivo phosphorus-31 magnetic resonance spectroscopy study of humans and rats. J Clin Invest. 1988;81:1695–701.PubMedCrossRefGoogle Scholar
  162. 162.
    Chu D, Shikama H, Khatra B, Exton J. Effects of altered thyroid status on beta-adrenergic actions on skeletal muscle glycogen metabolism. J Biol Chem. 1985;260:9994–10000.PubMedGoogle Scholar
  163. 163.
    Khaleeli A, Edwards R. Effect of treatment on skeletal muscle dysfunction in hypothyroidism. Clin Sci. 1984;66:63–8.PubMedGoogle Scholar
  164. 164.
    Rao S, Katiyar B, Nair K, Misra S. Neuromuscular status in hypothyroidism. Acta Neurol Scand. 1980;61:167.PubMedCrossRefGoogle Scholar
  165. 165.
    Riggs J. Acute exertional rhabdomyolysis in hypothyroidism: the result of a reversible defect in glycogenolysis? Mil Med. 1990;155:171–2.PubMedGoogle Scholar
  166. 166.
    Martinez F, Bermudez-Gomez M, Celli B. Hypothyrodism. A reversible cause of diaphragmatic dysfunction. Chest. 1989;96:1059–63.PubMedCrossRefGoogle Scholar
  167. 167.
    Cruz MW, Tendrich M, Vaisman M, Novis SA. Electro­neuromyography and neuromuscular findings in 16 primary hypothyroidism patients. Arq Neuropsiquiatr. 1996;54(1):12–8.PubMedCrossRefGoogle Scholar
  168. 168.
    El-Salem K, Ammari F. Neurophysiological changes in neurologically asymptomatic hypothyroid patients: a prospective cohort study. J Clin Neurophysiol. 2006;23(6):568–72.PubMedCrossRefGoogle Scholar
  169. 169.
    Eslamian F, Bahrami A, Aghamohammadzadeh N, Niafar M, Salekzamani Y, Behkamrad K. Electrophysiologic changes in patients with untreated primary hypothyroidism. J Clin Neurophysiol. 2011;28(3):323–8.PubMedCrossRefGoogle Scholar
  170. 170.
    Mizusawa H, Takagi A, Nonaka T, Sugita H, Toyokura Y. Muscular abnormalities in experimental hypothyroidism of rats with special reference to mounding phenomenon. Exp Neurol. 1984;85:480–92.PubMedCrossRefGoogle Scholar
  171. 171.
    Hornung K, Nix W Myoedema. A clinical and electrophysiological evaluation. Eur Neurol. 1992;32(3):130–3.PubMedCrossRefGoogle Scholar
  172. 172.
    Mukherjee A, Moitra S, Bhattacharyya A, Sengupta P. Kocher Debre Semelaigne syndrome. J Indian Med Assoc. 1984;82:21–2.PubMedGoogle Scholar
  173. 173.
    Evans R, Watanabe I, Singer P. Central changes in hypothyroid myopathy: a case report. Muscle Nerve. 1990;13:952–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Li Y, Nishihara E, Kakudo K. Hashimoto’s thyroiditis: old concepts and new insights. Curr Opin Rheumatol. 2011;23(1):102–7.PubMedCrossRefGoogle Scholar
  175. 175.
    Frank B, Schonle P, Klingehlofer J. Autoimmune thyroiditis and myopathy. Reversibility of myopathic alterations under thyroxine therapy. Clin Neurol Neurosurg. 1989;91(3):251–5.PubMedCrossRefGoogle Scholar
  176. 176.
    Klein I, Mantell P, Parker M, Levey G. Resolution of abnormal muscle enzyme studies in hypothyroidism. Am J Med. 1980;279:159.CrossRefGoogle Scholar
  177. 177.
    Werner H, Roith DL. New concepts in regulation and function of the insulin growth factors: implications for understanding normal growth and neoplasia. Cell Mol Life Sci. 2000;57:932–42.PubMedCrossRefGoogle Scholar
  178. 178.
    Philippou A, Halapas A, Maridaki M, Koutsilieris M. Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy. J Musculoskelet Neuronal Interact. 2007;7(3):208–18.PubMedGoogle Scholar
  179. 179.
    Moller N, Vendelbo MH, Kampmann U, et al. Growth hormone and protein metabolism. Clin Nutr. 2009;28(6):597–603.PubMedCrossRefGoogle Scholar
  180. 180.
    Miers WR, Barrett EJ. The role of insulin and other hormones in the regulation of amino acid and protein metabolism in humans. J Basic Clin Physiol Pharmacol. 1998;9(2–4):235–53.PubMedGoogle Scholar
  181. 181.
    Bigland B, Young F. Influence of growth hormone on the protein composition of rat muscle. J Endocrinol. 1954;10:179.CrossRefGoogle Scholar
  182. 182.
    Lecarpentier Y, Coirault C, Riou B, Chemla D, Mercadier JJ. Diaphragm strength and cross-bridge properties during chronic growth hormone hypersecretion. Eur Respir J. 1999;13(5):1070–7.PubMedCrossRefGoogle Scholar
  183. 183.
    Kostyo J, Reagan C. The biology of growth hormone. Pharmacol Ther. 1976;2:591–604.Google Scholar
  184. 184.
    Florini J, Ewton D. Skeletal muscle fiber types and myosin ATPase activity do not change with age or growth hormone administration. J Gerontol. 1989;44:B110–7.PubMedCrossRefGoogle Scholar
  185. 185.
    Stern L, Payne C, Hannapel L. Acromegaly: histochemical and electron microscopic changes in deltoid and intercostal muscle. Neurology. 1974;24:589.PubMedCrossRefGoogle Scholar
  186. 186.
    Lombardi G, Di Somma C, Marzullo P, Cerbone G, Colao A. Growth hormone and cardiac function. Ann Endocrinol (Paris). 2000;61(1):16–21.Google Scholar
  187. 187.
    Marie P. Sur deux cas d’acromégalie: hypertrophie singulière non congénitale des extrémités supérieures, inférieures et céphalique. Revue de Médecine. 1886;6:297–333.Google Scholar
  188. 188.
    Freda PU, Shen W, Reyes-Vidal CM, et al. Skeletal muscle mass in acromegaly assessed by magnetic resonance imaging and dual-photon x-ray absorptiometry. J Clin Endocrinol Metab. 2009;94(8):2880–6.PubMedCrossRefGoogle Scholar
  189. 189.
    Iandelli I, Gorini M, Duranti R, et al. Respiratory muscle function and control of breathing in patients with acromegaly. Eur Respir J. 1997;10(5):977–82.PubMedCrossRefGoogle Scholar
  190. 190.
    Zafar A, Jordan DR. Enlarged extraocular muscles as the presenting feature of acromegaly. Ophthal Plast Reconstr Surg. 2004;20(4):334–6.PubMedCrossRefGoogle Scholar
  191. 191.
    Heireman S, Delaey C, Claerhout I, Decock CE. Restrictive extraocular myopathy: a presenting feature of acromegaly. Indian J Ophthalmol. 2011;59(6):517–9.PubMedCrossRefGoogle Scholar
  192. 192.
    Miller A, Doll H, David J, Wass J. Impact of musculoskeletal disease on quality of life in long-standing acromegaly. Eur J Endocrinol. 2008;158(5):587–93.PubMedCrossRefGoogle Scholar
  193. 193.
    Pickett J, Layzer R, Levin S, Schneider V, Campbell M, Sumner A. Neuromuscular complications of acromegaly. Neurology. 1975;25:638.PubMedCrossRefGoogle Scholar
  194. 194.
    Khaleeli A, Levy R, Edwards R, et al. The neuromuscular features of acromegaly: a clinical and pathological study. J Neurol Neurosurg Psychiatry. 1984;47:1009–15.PubMedCrossRefGoogle Scholar
  195. 195.
    Ibbertson H, Manning P, Holdaway I, Gamble G, Synek B. The acromegalic rosary. Lancet. 1991;337(8734):154–6.PubMedCrossRefGoogle Scholar
  196. 196.
    Spinelli L, Petretta M, Verderame G, et al. Left ventricular diastolic function and cardiac performance during exercise in patients with acromegaly. J Clin Endocrinol Metab. 2003;88(9):4105–9.PubMedCrossRefGoogle Scholar
  197. 197.
    Carmichael JD, Bonert VS, Mirocha JM, Melmed S. The utility of oral glucose tolerance testing for diagnosis and assessment of treatment outcomes in 166 patients with acromegaly. J Clin Endocrinol Metab. 2009;94(2):523–7.PubMedCrossRefGoogle Scholar
  198. 198.
    Gsponer J, De Tribolet N, Deruaz JP, et al. Diagnosis, treatment, and outcome of pituitary tumors and other abnormal intrasellar masses. Retrospective analysis of 353 patients. Medicine (Baltimore). 1999;78(4):236–69.CrossRefGoogle Scholar
  199. 199.
    Pickett JB, Layzer RB, Levin SR, Scheider V, Campbell MJ, Sumner AJ. Neuromuscular complications of acromegaly. Neurology. 1975;25(7):638–45.PubMedCrossRefGoogle Scholar
  200. 200.
    McNab TL, Khandwala HM. Acromegaly as an endocrine form of myopathy: case report and review of literature. Endocr Pract. 2005;11(1):18–22.PubMedCrossRefGoogle Scholar
  201. 201.
    Brumback RA, Barr CE. Myopathy in acromegaly. A case study. Pathol Res Pract. 1983;177(1):41–6.PubMedCrossRefGoogle Scholar
  202. 202.
    Abe M, Tabuchi K, Fujii K, Oda K, Ishimoto S. Myopathy in acromegaly. Report of two cases. No To Shinkei. 1990;42(10):923–7.PubMedGoogle Scholar
  203. 203.
    Cheah JS, Chua SP, Ho CL. Ultrastructure of the skeletal muscles in acromegaly – before and after hypophysectomy. Am J Med Sci. 1975;269(2):183–7.PubMedCrossRefGoogle Scholar
  204. 204.
    Melmed S, Colao A, Barkan A, et al. Guidelines for acromegaly management: an update. J Clin Endocrinol Metab. 2009;94(5):1509–17.PubMedCrossRefGoogle Scholar
  205. 205.
    Dekkers OM, Biermasz NR, Pereira AM, Romijn JA, Vandenbroucke JP. Mortality in acromegaly: a metaanalysis. J Clin Endocrinol Metab. 2008;93(1):61–7.PubMedCrossRefGoogle Scholar
  206. 206.
    Bollano E, Omerovic E, Bohlooly-y M, et al. Impairment of cardiac function and bioenergetics in adult transgenic mice overexpressing the bovine growth hormone gene. Endocrinology. 2000;141(6):2229–35.PubMedCrossRefGoogle Scholar
  207. 207.
    Colao A, Pivonello R, Grasso LF, et al. Determinants of cardiac disease in newly diagnosed patients with acromegaly: results of a 10 year survey study. Eur J Endocrinol. 2011;165(5):713–21.PubMedCrossRefGoogle Scholar
  208. 208.
    Jayasena CN, Comninos AN, Clarke H, Donaldson M, Meeran K, Dhillo WS. The effects of long-term growth hormone and insulin-like growth factor-1 exposure on the development of cardiovascular, cerebrovascular and metabolic co-morbidities in treated patients with acromegaly. Clin Endocrinol (Oxf). 2011;75(2):220–5.CrossRefGoogle Scholar
  209. 209.
    Colao A. Improvement of cardiac parameters in patients with acromegaly treated with medical therapies. Pituitary. 2012;15(1):50–8.PubMedCrossRefGoogle Scholar
  210. 210.
    Brummer RJ, Lonn L, Kvist H, Grangard U, Bengtsson BA, Sjostrom L. Adipose tissue and muscle volume determination by computed tomography in acromegaly, before and 1 year after adenomectomy. Eur J Clin Invest. 1993;23(4):199–205.PubMedCrossRefGoogle Scholar
  211. 211.
    Janssen Y, Doornbos J, Roelfsema F. Changes in muscle volume, strength, and bioenergetics during recombinant human growth hormone (GH) therapy in adults with GH deficiency. J Clin Endocrinol Metab. 1999;84(1):279–84.PubMedCrossRefGoogle Scholar
  212. 212.
    Gotherstrom G, Bengtsson BA, Sunnerhagen KS, Johannsson G, Svensson J. The effects of five-year growth hormone replacement therapy on muscle strength in elderly hypopituitary patients. Clin Endocrinol (Oxf). 2005;62(1):105–13.CrossRefGoogle Scholar
  213. 213.
    Widdowson WM, Gibney J. The effect of growth hormone replacement on exercise capacity in patients with GH deficiency: a metaanalysis. J Clin Endocrinol Metab. 2008;93(11):4413–7.PubMedCrossRefGoogle Scholar
  214. 214.
    Ekman B, Gerdle B, Arnqvist HJ. Growth hormone substitution titrated to obtain IGF-I levels in the physiological range in hypopituitary adults: effects upon dynamic strength, endurance and EMG. Eur J Appl Physiol. 2003;90(5–6):496–504.PubMedCrossRefGoogle Scholar
  215. 215.
    Lanzi R, Previtali SC, Sansone V, et al. Hypokalemic periodic paralysis in a patient with acquired growth hormone deficiency. J Endocrinol Invest. 2007;30(4):341–5.PubMedGoogle Scholar
  216. 216.
    Cuatrecasas G, Gonzalez MJ, Alegre C, et al. High prevalence of growth hormone deficiency in severe fibromyalgia syndromes. J Clin Endocrinol Metab. 2010;95(9):4331–7.PubMedCrossRefGoogle Scholar
  217. 217.
    Bennett RM, Clark SC, Walczyk J. A randomized, double-blind, placebo-controlled study of growth hormone in the treatment of fibromyalgia. Am J Med. 1998;104(3):227–31.PubMedCrossRefGoogle Scholar
  218. 218.
    Webb SM, de Andres-Aguayo I, Rojas-Garcia R, et al. Neuromuscular dysfunction in adult growth hormone deficiency. Clin Endocrinol (Oxf). 2003;59(4):450–8.CrossRefGoogle Scholar
  219. 219.
    Gotherstrom G, Elbornsson M, Stibrant-Sunnerhagen K, Bengtsson BA, Johannsson G, Svensson J. Ten years of growth hormone (GH) replacement normalizes muscle strength in GH-deficient adults. J Clin Endocrinol Metab. 2009;94(3):809–16.PubMedCrossRefGoogle Scholar
  220. 220.
    Svensson J, Sunnerhagen KS, Johannsson G. Five years of growth hormone replacement therapy in adults: age- and gender-related changes in isometric and isokinetic muscle strength. J Clin Endocrinol Metab. 2003;88(5):2061–9.PubMedCrossRefGoogle Scholar
  221. 221.
    Swords FM, Carroll PV, Kisalu J, Wood PJ, Taylor NF, Monson JP. The effects of growth hormone deficiency and replacement on glucocorticoid exposure in hypopituitary patients on cortisone acetate and hydrocortisone replacement. Clin Endocrinol (Oxf). 2003;59(5):613–20.CrossRefGoogle Scholar
  222. 222.
    Bhasin S, Calof OM, Storer TW, et al. Drug insight: testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat Clin Pract Endocrinol Metab. 2006;2(3):146–59.PubMedCrossRefGoogle Scholar
  223. 223.
    Toogood AA. The somatopause: an indication for growth hormone therapy? Treat Endocrinol. 2004;3(4):201–9.PubMedCrossRefGoogle Scholar
  224. 224.
    Ball E, Sanwal B. A synergistic effect of glucocorticoids and insulin on the differentiation of myoblasts. J Cell Physiol. 1980;102:27.PubMedCrossRefGoogle Scholar
  225. 225.
    Ewton D, Florini J. Effects of the somatomedins and insulin on myoblast differentiation in vivo. Dev Biol. 1981;86:31.PubMedCrossRefGoogle Scholar
  226. 226.
    Cogan JD, Phillips JA. Growth hormone deficiency disorders. In: Jameson JL, Collins FS, editors. Principles of molecular medicine. Totowa: Humana Press; 1998. p. 451–8.CrossRefGoogle Scholar
  227. 227.
    Houghton LA, Vieth R. The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr. 2006;84(4):694–7.PubMedGoogle Scholar
  228. 228.
    Minghetti P, Norman A. 1,25(OH)2-vitamin D3 receptors: gene regulation and genetic circuitry. FASEB J. 1988;2:3043–53.PubMedGoogle Scholar
  229. 229.
    Potts JT. Parathyroid hormone: physiology, chemistry, biosynthesis, secretion, metabolism, and mode of action. In: DeGroot L, editor. Endocrinology. Philadelphia: Suanders; 1995. p. 920.Google Scholar
  230. 230.
    Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res. 1998;13(3):325–49.PubMedCrossRefGoogle Scholar
  231. 231.
    Pike JW, Meyer MB, Martowicz ML, et al. Emerging regulatory paradigms for control of gene expression by 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol. 2010;121(1–2):130–5.PubMedCrossRefGoogle Scholar
  232. 232.
    Li X, Liu H, Qin L, et al. Determination of dual effects of parathyroid hormone on skeletal gene expression in vivo by microarray and network analysis. J Biol Chem. 2007;282(45):33086–97.PubMedCrossRefGoogle Scholar
  233. 233.
    Naot D, Cornish J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone. 2008;43(5):813–8.PubMedCrossRefGoogle Scholar
  234. 234.
    Hirsch PF, Baruch H. Is calcitonin an important physiological ­substance? Endocrine. 2003;21(3):201–8.PubMedCrossRefGoogle Scholar
  235. 235.
    Simpson RU, Thomas GA, Arnold AJ. Identification of 1,25-­dihydroxyvitamin D3 receptors and activities in muscle. J Biol Chem. 1985;260(15):8882–91.PubMedGoogle Scholar
  236. 236.
    Boland R, Norman A, Ritz E, Hasselbach W. Presence of a 1,25-dihydroxy-vitamin D3 receptor in chick skeletal muscle ­myoblasts. Biochem Biophys Res Commun. 1985;128(1):305–11.PubMedCrossRefGoogle Scholar
  237. 237.
    Costa EM, Blau HM, Feldman D. 1,25-dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells. Endocrinology. 1986;119(5):2214–20.PubMedCrossRefGoogle Scholar
  238. 238.
    Ceglia L. Vitamin D, and skeletal muscle tissue and function. Mol Aspects Med. 2008;29(6):407–14.PubMedCrossRefGoogle Scholar
  239. 239.
    Boland R, de Boland AR, Marinissen MJ, Santillan G, Vazquez G, Zanello S. Avian muscle cells as targets for the secosteroid hormone 1,25-dihydroxy-vitamin D3. Mol Cell Endocrinol. 1995;114(1–2):1–8.PubMedCrossRefGoogle Scholar
  240. 240.
    Zanello SB, Boland RL, Norman AW. cDNA sequence identity of a vitamin D-dependent calcium-binding protein in the chick to calbindin D-9K. Endocrinology. 1995;136(6):2784–7.PubMedCrossRefGoogle Scholar
  241. 241.
    Drittanti L, de Boland AR, Boland R. Stimulation of calmodulin synthesis in proliferating myoblasts by 1,25-dihydroxy-vitamin D3. Mol Cell Endocrinol. 1990;74(2):143–53.PubMedCrossRefGoogle Scholar
  242. 242.
    Morelli S, Boland R, de Boland AR. 1,25(OH)2-vitamin D3 stimulation of phospholipases C and D in muscle cells involves extracellular calcium and a pertussis-sensitive G protein. Mol Cell Endocrinol. 1996;122(2):207–11.PubMedCrossRefGoogle Scholar
  243. 243.
    Morelli S, Buitrago C, Boland R, de Boland AR. The stimulation of MAP kinase by 1,25(OH)(2)-vitamin D(3) in skeletal muscle cells is mediated by protein kinase C and calcium. Mol Cell Endocrinol. 2001;173(1–2):41–52.PubMedCrossRefGoogle Scholar
  244. 244.
    Garber A. Effects of parathyroid hormone on skeletal muscle protein and amino acid metabolism in the rat. J Clin Invest. 1983;71:1806–21.PubMedCrossRefGoogle Scholar
  245. 245.
    Baczynski R, Massry S, Magott M, El-Belbessi S, Kohan R, Braubar N. Effect of parathyroid hormone on energy metabolism of skeletal muscle. Kidney Int. 1985;28:722–7.PubMedCrossRefGoogle Scholar
  246. 246.
    Pleasure D, Wyszynski B, Sumner D, et al. Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. J Clin Invest. 1979;64:1157.PubMedCrossRefGoogle Scholar
  247. 247.
    Ritz E, Boland R, Kreusser W. Effects of vitamin D and parathormone on muscle: potential role in uremic myopathy. Am J Clin Nutr. 1980;33:1522.PubMedGoogle Scholar
  248. 248.
    Rodman J, Baker T. Changes in the kinetics of muscle contraction in vitamin D depleted rats. Kidney Int. 1978;13:189.PubMedCrossRefGoogle Scholar
  249. 249.
    Lazaro RP, Kirshner HS. Proximal muscle weakness in uremia. Case reports and review of the literature. Arch Neurol. 1980;37(9):555–8.PubMedCrossRefGoogle Scholar
  250. 250.
    Conjard A, Ferrier B, Martin M, Caillette A, Carrier H, Baverel G. Effects of chronic renal failure on enzymes of energy metabolism in individual human muscle fibers. J Am Soc Nephrol. 1995;6(1):68–74.PubMedGoogle Scholar
  251. 251.
    Henderson R, Ledingham J, Oliver D, et al. Effects of 1,25-­dihydroxycholecalciferon on calcium absorption, muscle weakness, and bone disease in chronic renal failure. Lancet. 1974;1:379.PubMedCrossRefGoogle Scholar
  252. 252.
    Turken S, Cafferty M, Silverberg S, et al. Neuromuscular involvement in mild, asymptomatic primary hyperparathyroidism. Am J Med. 1989;87:553–7.PubMedCrossRefGoogle Scholar
  253. 253.
    Chou FF, Sheen-Chen SM, Leong CP. Neuromuscular recovery after parathyroidectomy in primary hyperparathyroidism. Surgery. 1995;117(1):18–25.PubMedCrossRefGoogle Scholar
  254. 254.
    Patten B, Bilezikian J, Mallette L, Prince A, Engel W, Aurbach G. Neuromuscular disease in primary hyperparathyroidism. Ann Intern Med. 1974;80:182.PubMedCrossRefGoogle Scholar
  255. 255.
    Patten B, Engel W. Phosphate and parathyroid disorders associated with the syndrome of ALS. In: Rowland L, editor. Human motor neuron disease. New York: Raven; 1982. p. 181–99.Google Scholar
  256. 256.
    Jackson CE, Amato AA, Bryan WW, Wolfe GI, Sakhaee K, Barohn RJ. Primary hyperparathyroidism and ALS: is there a relation? Neurology. 1998;50(6):1795–9.PubMedCrossRefGoogle Scholar
  257. 257.
    Ljunghall S, Akerstrom G, Johansson G, Olsson Y, Stalberg E. Neuromuscular involvement in primary hyperparathyroidism. J Neurol. 1984;231:263–5.PubMedCrossRefGoogle Scholar
  258. 258.
    Cholod E, Haust M, Hudson A, Lewis F. Myopathy in primary familial hyperparathyroidism. Clinical and morphological studies. Am J Med. 1970;48:700.PubMedCrossRefGoogle Scholar
  259. 259.
    Deutch SR, Jensen MB, Christiansen PM, Hessov I. Muscular performance and fatigue in primary hyperparathyroidism. World J Surg. 2000;24(1):102–7.PubMedCrossRefGoogle Scholar
  260. 260.
    Delbridge L, Marshman D, Reeve T, Crummer P, Posen S. Neuromuscular symptoms in elderly patients with hyperparathyroidism: improvement with parathyroid surgery. Med J Aust. 1988;149:74–6.PubMedGoogle Scholar
  261. 261.
    Floyd M, Ayyar D, Barwick D, Hudgson P, Weightman D. Myopathy in chronic renal failure. Q J Med. 1974;63:509.Google Scholar
  262. 262.
    Bautista J, Gil-Necija E, Castilla J, Chinchon I, Rafel E. Dialysis myopathy. Report of 13 cases. Acta Neuropathol. 1983;61:71–5.PubMedCrossRefGoogle Scholar
  263. 263.
    Berretta JS, Holbrook CT, Haller JS. Chronic renal failure presenting as proximal muscle weakness in a child. J Child Neurol. 1986;1(1):50–2.PubMedCrossRefGoogle Scholar
  264. 264.
    Glerup H, Mikkelsen K, Poulsen L, et al. Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif Tissue Int. 2000;66(6):419–24.PubMedCrossRefGoogle Scholar
  265. 265.
    Irani P. Electromyography in nutritional osteomalacic myopathy. J Neurol Neurosurg Psychiatry. 1976;39:686–93.PubMedCrossRefGoogle Scholar
  266. 266.
    Young A, Brenton DP, Edwards R. Analysis of muscle weakness in osteomalacia. Clin Sci Mol Med. 1978;54:31–7.Google Scholar
  267. 267.
    Adachi M, Tachibana K, Masuno M, et al. Clinical characteristics of children with hypoparathyroidism due to 22q11.2 microdeletion. Eur J Pediatr. 1998;157(1):34–8.PubMedCrossRefGoogle Scholar
  268. 268.
    Daw SC, Taylor C, Kraman M, et al. A common region of 10p deleted in DiGeorge and velocardiofacial syndromes. Nat Genet. 1996;13(4):458–60.PubMedCrossRefGoogle Scholar
  269. 269.
    Schnabel P, Bohm M. Mutations of signal-transducing G proteins in human disease. J Mol Med. 1995;73(5):221–8.PubMedCrossRefGoogle Scholar
  270. 270.
    Flink E. Magnesium deficiency: etiology and clinical spectrum. Acta Med Scand Suppl. 1981;647:125.PubMedGoogle Scholar
  271. 271.
    Day J, Parry G. Normocalcemic tetany abolished by calcium infusion. Ann Neurol. 1990;27:438–40.PubMedCrossRefGoogle Scholar
  272. 272.
    Yamashita H, Murakami T, Noguchi S, et al. Postoperative tetany in Graves disease: important role of vitamin D metabolites. Ann Surg. 1999;229(2):237–45.PubMedCrossRefGoogle Scholar
  273. 273.
    Ishikawa T, Inagaki H, Kanayama M, Manzai T. Hypocalcemic hyper-CK-emia in hypoparathyroidism. Brain Dev. 1990;12(2):249–52.PubMedCrossRefGoogle Scholar
  274. 274.
    Yamaguchi H, Okamoto K, Shooji M, Morimatsu M, Hirai S. Muscle histology of hypocalcemic myopathy in hypoparathyroidism. J Neurol Neurosurg Psychiatry. 1987;50:817–8.PubMedCrossRefGoogle Scholar
  275. 275.
    Piechowiak H, Grobner W, Kremer H, Pongratz D, Schaub J. Pseudohypoparathyroidism and hypocalcemia. Klin Wochenschr. 1981;59:1195.PubMedCrossRefGoogle Scholar
  276. 276.
    DiMauro S, Bonilla E, Zeviani M, Nakagawa M, Devivo D. Mitochondrial myopathies. Ann Neurol. 1985;17:521–38.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michael R. Douglas
    • 1
    • 2
  • Zaki Hassan-Smith
    • 3
  • Robert L. Ruff
    • 4
  1. 1.Russells Hall Hospital, Dudley Group NHS Foundation TrustDudley, West MidlandsUK
  2. 2.School of Clinical and Experimental MedicineUniversity of Birmingham, Centre for Translational Inflammation ResearchBirminghamUK
  3. 3.Centre for Endocrinology, Diabetes and MetabolismUniversity of Birmingham, Institute for Biomedical Research, School of Clinical and Experimental MedicineBirmingham, West MidlandsUK
  4. 4.Department of NeurologyLouis Stokes Cleveland VA Medical Center and Case Western Reserve University School of MedicineClevelandUSA

Personalised recommendations