Skip to main content

Autoantibody Testing in Peripheral Neuropathy

  • Chapter
  • First Online:
Neuromuscular Disorders in Clinical Practice
  • 5924 Accesses

Abstract

Immune-mediated neuromuscular disorders and peripheral neuropathies are common in clinical neuromuscular practice. They are important to diagnose accurately since most are treatable which results in improvements in patients’ function and quality of life. This chapter provides a general classification of neuromuscular disorder-associated autoantibodies and discusses methods of detection and clinical and therapeutic correlations of specific autoantibodies found in motor, sensory, or autonomic polyneuropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pestronk A. Neuromuscular Disease Center, Washington University School of Medicine, St. Louis, MO. http://neuromuscular.wustl.edu. Accessed August 2012.

  2. Dyck PJ, Thomas PK, editors. Peripheral neuropathy. 4th ed. Philadelphia: Elsevier Saunders; 2005.

    Google Scholar 

  3. Donofrio PD. Textbook of peripheral neuropathy [electronic resource]. New York: Demos Medical Publishing; 2012 (electronic resource).

    Google Scholar 

  4. Pease WS, Lew HL, Johnson EW. Johnson’s practical electromyography. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2009 (electronic resource).

    Google Scholar 

  5. Kimura J. Peripheral nerve diseases. Edinburgh/New York: Elsevier; 2006.

    Google Scholar 

  6. Pestronk A, Lopate G. Polyneuropathies and antibodies to nerve components. In: Dyck PJ, Thomas PK, editors. Peripheral neuropathy. 4th ed. Philadelphia: Elsevier Saunders; 2007. p. 2177–96.

    Google Scholar 

  7. Howard Jr FM, Lennon VA, Finley J, Matsumoto J, Elveback LR. Clinical correlations of antibodies that bind, block, or modulate human acetylcholine receptors in myasthenia gravis. Ann N Y Acad Sci. 1987;505:526–38.

    PubMed  Google Scholar 

  8. Vincent A, Newsom-Davis J. Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays. J Neurol Neurosurg Psychiatry. 1985;48:1246–52.

    PubMed  CAS  Google Scholar 

  9. Kaminski H. Myasthenia gravis and related disorders. 2nd ed. New York: Humana Press; 2009.

    Google Scholar 

  10. Vernino S, Hopkins S, Wang Z. Autonomic ganglia, acetylcholine receptor antibodies, and autoimmune ganglionopathy. Auton Neurosci. 2009;146:3–7.

    PubMed  CAS  Google Scholar 

  11. Titulaer MJ, Lang B, Verschuuren JJ. Lambert-Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurol. 2011;10:1098–107.

    PubMed  Google Scholar 

  12. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain. 2010;133:2734–48.

    PubMed  Google Scholar 

  13. Vernino S. Antibody testing as a diagnostic tool in autonomic disorders. Clin Auton Res. 2009;19:13–9.

    PubMed  Google Scholar 

  14. McKeon A, Lennon VA, Lachance DH, Fealey RD, Pittock SJ. Ganglionic acetylcholine receptor autoantibody: oncological, neurological, and serological accompaniments. Arch Neurol. 2009;66:735–7341.

    PubMed  Google Scholar 

  15. Giometto B, Grisold W, Vitaliani R, Graus F, Honnorat J, Bertolini G, et al. Paraneoplastic neurologic syndrome in the PNS Euronetwork database: a European study from 20 centers. Arch Neurol. 2010;67:330–5.

    PubMed  Google Scholar 

  16. Wang Z, Low PA, Jordan J, Freeman R, Gibbons CH, Schroeder C, et al. Autoimmune autonomic ganglionopathy: IgG effects on ganglionic acetylcholine receptor current. Neurology. 2007;68:1917–21.

    PubMed  CAS  Google Scholar 

  17. Rajakulendran S, Kaski D, Hanna MG. Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS. Nat Rev Neurol. 2012;8:86–96.

    PubMed  CAS  Google Scholar 

  18. Lennon VA, Krvzer TJ, Griesmann GE, et al. Calcium-channel antibodies in Lambert: Eaton myasthenic syndrome and other paraneoplastic syndromes. N Engl J Med. 1995;332:1467–74.

    PubMed  CAS  Google Scholar 

  19. Stich O, Klages E, Bischler P, Jarius S, Rasiah C, Voltz R, et al. SOX1 antibodies in sera from patients with paraneoplastic neurological syndromes. Acta Neurol Scand. 2012;125:326–31.

    PubMed  CAS  Google Scholar 

  20. Irani SR, Pettingill P, Kleopa KA, Schiza N, Waters P, Mazia C, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol. 2012;72(2):241–55.

    PubMed  Google Scholar 

  21. Lai M, Huijbers MG, Lancaster E, Graus F, Bataller L, Balice-Gordon R, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol. 2010;9:776–85.

    PubMed  CAS  Google Scholar 

  22. Lancaster E, Huijbers MG, Bar V, Boronat A, Wong A, Martinez-Hernandez E, et al. Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Ann Neurol. 2011;69:303–11.

    PubMed  CAS  Google Scholar 

  23. Yuki N, Hartung HP. Guillain-Barré syndrome. N Engl J Med. 2012;366:2294–304.

    PubMed  CAS  Google Scholar 

  24. Shahrizaila N, Yuki N. Antiganglioside antibodies in Guillain-Barré syndrome and its related conditions. Expert Rev Neurother. 2011;11:1305–13.

    PubMed  CAS  Google Scholar 

  25. Ho TW, Willison HJ, Nachamkin I, et al. Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain–Barré syndrome. Ann Neurol. 1999;45:168–73.

    PubMed  CAS  Google Scholar 

  26. Kaida K, Ariga T, Yu RK. Antiganglioside antibodies and their pathophysiological effects on Guillain-Barré syndrome and related disorders – a review. Glycobiology. 2009;19:676–92.

    PubMed  CAS  Google Scholar 

  27. Susuki K, Yuki N, Schafer DP, Hirata K, Zhang G, Funakoshi K, et al. Dysfunction of nodes of Ranvier: a mechanism for anti-ganglioside antibody-mediated neuropathies. Exp Neurol. 2012;233:534–42.

    PubMed  CAS  Google Scholar 

  28. Uncini A. A common mechanism and a new categorization for anti-ganglioside antibody-mediated neuropathies. Exp Neurol. 2012;235:513–16.

    PubMed  CAS  Google Scholar 

  29. McKhann GM, Cornblath DR, Griffin JW, et al. Acute motor axonal neuropathy: a frequent cause of acute flaccid paralysis in China. Ann Neurol. 1993;33:333–42.

    PubMed  CAS  Google Scholar 

  30. Kornberg AJ, Pestronk A, Bieser K, et al. The clinical correlates of high-titer IgG anti-GM1 antibodies. Ann Neurol. 1994;35:234–7.

    PubMed  CAS  Google Scholar 

  31. Griffin JW, Li CY, Ho TW, et al. Pathology of the motor-sensory axonal Guillain–Barré syndrome. Ann Neurol. 1996;39:17–28.

    PubMed  CAS  Google Scholar 

  32. Capasso M, Caporale CM, Pomilio F, Gandolfi P, Lugaresi A, Uncini A. Acute motor conduction block neuropathy: another Guillain–Barré syndrome variant. Neurology. 2003;61:617–22.

    PubMed  CAS  Google Scholar 

  33. Uncini A, Yuki N. Electrophysiologic and immunopathologic correlates in Guillain–Barré syndrome subtypes. Expert Rev Neurother. 2009;9:869–994.

    PubMed  CAS  Google Scholar 

  34. Kaida K, Kusunoki S, Kamakura K, et al. Guillain-Barré syndrome with IgM antibody to the ganglioside GalNAc-GD1a. J Neuroimmunol. 2001;113:260–7.

    PubMed  CAS  Google Scholar 

  35. Kim JK, Kim DS, Kusunoki S, Kim SJ, Yoo BG. Acute pure motor demyelinating neuropathy with hyperreflexia and anti-GalNAc-GD1a antibodies. Clin Neurol Neurosurg. 2012;114(10):1345–7.

    PubMed  Google Scholar 

  36. Yuki N, Kokubun N, Kuwabara S, Sekiguchi Y, Ito M, Odaka M, et al. Guillain-Barré syndrome associated with normal or exaggerated tendon reflexes. J Neurol. 2012;259:1181–90.

    PubMed  Google Scholar 

  37. Yuki N, Ang CW, Koga M, et al. Clinical features and response to treatment in Guillain-Barré syndrome associated with antibodies to GM1b ganglioside. Ann Neurol. 2000;47:314–21.

    PubMed  CAS  Google Scholar 

  38. Yuki N, Yamada M, Sato S et al. Association of IgG anti-GD1a antibody with severe Guillain–Barré syndrome. Muscle Nerve 1993;16:642–7.

    Google Scholar 

  39. Li F, Pestronk A. Autoantibodies to GM1 ganglioside: different reactivity to GM1-liposomes in amyotrophic lateral sclerosis and lower motor neuron disorders. J Neurol Sci. 1991;104:209–2.

    Google Scholar 

  40. Kaida K, Sonoo M, Ogawa G, et al. GM1/GalNAc-GD1a complex: a target for pure motor Guillain–Barré syndrome. Neurology. 2008;71:1683–90.

    PubMed  CAS  Google Scholar 

  41. Galban-Horcajo F, Fitzpatrick AM, Hutton AJ, Dunn SM, Kalna G, Brennan KM, et al. Antibodies to heteromeric glycolipid complexes in multifocal motor neuropathy. Eur J Neurol. 2012;20(1):62–70.

    PubMed  Google Scholar 

  42. Koga M, Gilbert M, Takahashi M, Li J, Hirata K, Kanda T, et al. GQ1b-seronegative Fisher syndrome: clinical features and new serological markers. J Neurol. 2013;259:1366–74.

    Google Scholar 

  43. Kuijf ML, Godschalk PC, Gilbert M, et al. Origin of ganglioside complex antibodies in Guillain–Barré syndrome. J Neuroimmunol. 2007;188:69–73.

    PubMed  CAS  Google Scholar 

  44. Yuki N, Yoshino H, Sato S, Miyatake T. Acute axonal polyneuropathy associated with anti-GM1 antibodies following Campylobacter enteritis. Neurology. 1990;40:1900–2.

    PubMed  CAS  Google Scholar 

  45. Sheikh KA, Deerinck TJ, Ellisman MH, Griffin JW. The distribution of ganglioside-like moieties in peripheral nerves. Brain. 1999;1999(122):449–60.

    Google Scholar 

  46. Ogawa-Goto K, Abe T. Gangliosides and glycosphingolipids of peripheral nervous system myelins-a minireview. Neurochem Res. 1998;23:305–10.

    PubMed  CAS  Google Scholar 

  47. Thomas FP, Trojaborg W, Nagy C, Santoro M, Sadiq SA, Latov N, et al. Experimental autoimmune neuropathy with anti-GM1 antibodies and immunoglobulin deposits at the nodes of Ranvier. Acta Neuropathol. 1991;82:378–83.

    PubMed  CAS  Google Scholar 

  48. Uncini A, Santoro M, Corbo M, Lugaresi A, Latov N. Conduction abnormalities induced by sera of patients with multifocal motor neuropathy and anti-GM1 antibodies. Muscle Nerve. 1993;16:610–15.

    PubMed  CAS  Google Scholar 

  49. Paparounas K, O’Hanlon GM, O’Leary CP, Rowan EG, Willison HJ. Anti-ganglioside antibodies can bind peripheral nerve nodes of Ranvier and activate the complement cascade without inducing acute conduction block in vitro. Brain. 1999;122:807–16.

    PubMed  Google Scholar 

  50. Susuki K, Rasband MN, Tohyama K, et al. Anti-GM1 antibodies cause complement mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci. 2007;27:3956–67.

    PubMed  CAS  Google Scholar 

  51. Hirota N, Kaji R, Bostock H, Shindo K, Kawasaki T, Mizutani K, et al. The physiological effect of anti-GM1 antibodies on saltatory conduction and transmembrane currents in single motor axons. Brain. 1997;120:2159–69.

    PubMed  Google Scholar 

  52. Takigawa T, Yasuda H, Kikkawa R, Shigeta Y, Saida T, Kitasato H. Antibodies against GM1 ganglioside affect K+ and Na+ currents in isolated rat myelinated nerve fibers. Ann Neurol. 1995;37:436–42.

    PubMed  CAS  Google Scholar 

  53. Chiba A, Kusunoki S, Obata H, Machinami R, Kanazawa I. Ganglioside composition of the human cranial nerves, with special reference to pathophysiology of Miller Fisher syndrome. Brain Res. 1997;745:32–6.

    PubMed  CAS  Google Scholar 

  54. Liu JX, Willison HJ, Pedrosa-Domellof F. Immunolocalisation of GQ1b and related gangliosides in human extraocular neuromuscular junctions and muscle spindles. Invest Ophthalmol Vis Sci. 2009;50:3226–32.

    PubMed  Google Scholar 

  55. Chiba A, Kusunoki S, Shimizu T, Kanazawa I. Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome. Ann Neurol. 1992;31:677–9.

    PubMed  CAS  Google Scholar 

  56. Willison HJ, Veitch J. Immunoglobulin subclass distribution and binding characteristics of anti-GQ1b antibodies in Miller Fisher syndrome. J Neuroimmunol. 1994;50:159–65.

    PubMed  CAS  Google Scholar 

  57. Koga M, Gilbert M, Li J, et al. Antecedent infections in Fisher syndrome: a common pathogenesis of molecular mimicry. Neurology. 2005;64:1605–11.

    PubMed  CAS  Google Scholar 

  58. Houliston RS, Koga M, Li J, et al. A Haemophilus influenzae strain associated with Fisher syndrome expresses a novel disialylated ganglioside mimic. Biochemistry. 2007;46:8164–71.

    PubMed  CAS  Google Scholar 

  59. Ito M, Kuwabara S, Odaka M, et al. Bickerstaff’s brainstem encephalitis and Fisher syndrome form a continuous spectrum: clinical analysis of 581 cases. J Neurol. 2008;255:674–82.

    PubMed  CAS  Google Scholar 

  60. O’Leary CP, Veitch J, Durward WF, Thomas AM, Rees JH, Willison HJ. Acute oropharyngeal palsy is associated with antibodies to GQ1b and GT1a gangliosides. J Neurol Neurosurg Psychiatry. 1996;61:649–51.

    PubMed  Google Scholar 

  61. Koga M, Yoshino H, Morimatsu M, Yuki N. Anti-GT1a IgG in Guillain–Barré syndrome. J Neurol Neurosurg Psychiatry. 2002;72:767–71.

    PubMed  CAS  Google Scholar 

  62. Tatsumoto M, Odaka M, Hirata K, Yuki N. Isolated abducens nerve palsy as a regional variant of Guillain–Barré syndrome. J Neurol Sci. 2006;243:35–8.

    PubMed  Google Scholar 

  63. Kusunoki S, Mashiko H, Mochizuki N, Chiba A, Arita M, Hitoshi S, et al. Binding of antibodies against GM1 and GD1b in human peripheral nerve. Muscle Nerve. 1997;20:840–5.

    PubMed  CAS  Google Scholar 

  64. Ito M, Matsuno K, Sakumoto Y, Hirata K, Yuki N. Ataxic Guillain–Barré syndrome and acute sensory ataxic neuropathy form a continuous spectrum. J Neurol Neurosurg Psychiatry. 2010;82:294–9.

    Google Scholar 

  65. Kusunoki S, Hitoshi S, Kaida K, Arita M, Kanazawa I. Monospecific anti-GD1b IgG is required to induce rabbit ataxic neuropathy. Ann Neurol. 1999;45(3):400–3.

    PubMed  CAS  Google Scholar 

  66. Kusunoki S, Hitoshi S, Kaida K, Murayama S, Kanazawa I. Degeneration of rabbit sensory neurons induced by passive transfer of anti-GD1b antiserum. Neurosci Lett. 1999;273:33–6.

    PubMed  CAS  Google Scholar 

  67. Takada K, Shimizu J, Kusunoki S. Apoptosis of primary sensory neurons in GD1b-induced sensory ataxic neuropathy. Exp Neurol. 2008;209:279–83.

    PubMed  CAS  Google Scholar 

  68. Ang CW, Tio-Gillen AP, Groen J, et al. Cross-reactive anti-galactocerebroside antibodies and Mycoplasma pneumonia infections in Guillain-Barré syndrome. J Neuroimmunol. 2002;130:179–83.

    PubMed  CAS  Google Scholar 

  69. Hao Q, Saida T, Kuroki S, et al. Antibodies to gangliosides and galactocerebroside in patients with Guillain-Barré syndrome with preceding Campylobacter jejuni and other identified infections. J Neuroimmunol. 1998;81:116–26.

    PubMed  CAS  Google Scholar 

  70. Saida T, Saida K, Dorfman SH, et al. Experimental allergic neuritis induced by sensitization with galactocerebroside. Science. 1979;204:1103–6.

    PubMed  CAS  Google Scholar 

  71. Fry JM, Weissbarth S, Lehrer GM, Bornstein MB. Cerebroside antibody inhibits sulfatide synthesis and myelination and demyelinates in cord tissue cultures. Science. 1974;183:540–2.

    PubMed  CAS  Google Scholar 

  72. Pestronk A, Choksi R, Yee WC, et al. Serum antibodies to heparan sulfate glycosaminoglycans in Guillain-Barré syndrome and other demyelinating polyneuropathies. J Neuroimmunol. 1998;91:204–9.

    PubMed  CAS  Google Scholar 

  73. Mammen AL. Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis. Nat Rev Neurol. 2011;7:343–54.

    PubMed  CAS  Google Scholar 

  74. Wilde B, van Paassen P, Witzke O, Tervaert JW. New pathophysiological insights and treatment of ANCA-associated vasculitis. Kidney Int. 2011;79:599–612.

    PubMed  CAS  Google Scholar 

  75. Kallenberg CG. Treatment of ANCA-associated vasculitis, where to go? Clin Rev Allergy Immunol. 2012;43(3):242–8.

    PubMed  CAS  Google Scholar 

  76. Sinclair D, Stevens JM. Role of antineutrophil cytoplasmic antibodies and glomerular basement membrane antibodies in the diagnosis and monitoring of systemic vasculitides. Ann Clin Biochem. 2007;44:432–42.

    PubMed  CAS  Google Scholar 

  77. Zhang W, Zhou G, Shi Q, Zhang X, Zeng XF, Zhang FC. Clinical analysis of nervous system involvement in ANCA-associated systemic vasculitides. Clin Exp Rheumatol. 2009;27(1 Suppl 52):S65–9.

    PubMed  CAS  Google Scholar 

  78. Lyons PA, Rayner TF, Trivedi S, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367:214–23.

    PubMed  CAS  Google Scholar 

  79. Oka N, Kawasaki T, Matsui M, Shigematsu K, Unuma T, Sugiyama H. Two subtypes of Churg-Strauss syndrome with neuropathy: the roles of eosinophils and ANCA. Mod Rheumatol. 2011;21:290–5.

    PubMed  Google Scholar 

  80. Kararizou E, Davaki P, Karandreas N, Davou R, Vassilopoulos D. Nonsystemic vasculitic neuropathy: a clinicopathological study of 22 cases. J Rheumatol. 2005;3:853–8.

    Google Scholar 

  81. Suppiah R, Hadden RD, Batra R, et al. Peripheral neuropathy in ANCA-associated vasculitis: outcomes from the European Vasculitis Study Group trials. Rheumatology (Oxford). 2011;50:2214–22.

    Google Scholar 

  82. Walsh M, Flossmann O, Berden A, et al. Risk factors for relapse of antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 2012;64:542–8.

    PubMed  CAS  Google Scholar 

  83. King PH, Redden D, Palmgren JS, Nabors LB, Lennon VA. Hu antigen specificities of ANNA-I autoantibodies in paraneoplastic neurological disease. J Autoimmun. 1999;13:435–43.

    PubMed  CAS  Google Scholar 

  84. Karim AR, Hughes RG, Winer JB, Williams AC, Bradwell AR. Paraneoplastic neurological antibodies: a laboratory experience. Ann N Y Acad Sci. 2005;1050:274–85.

    PubMed  CAS  Google Scholar 

  85. Lucchinetti CF, Kimmel DW, Lennon VA. Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology. 1998;50:652–7.

    PubMed  CAS  Google Scholar 

  86. Graus F, Keime-Guibert F, Reñe R, et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain. 2001;124:1138–48.

    PubMed  CAS  Google Scholar 

  87. Kuntzer T, Antoine JC, Steck AJ. Clinical features and pathophysiological basis of sensory neuronopathies (ganglionopathies). Muscle Nerve. 2004;30:255–68.

    PubMed  Google Scholar 

  88. Camdessanché JP, Ferraud K, Boutahar N, Lassablière F, Mutter M, Touret M, et al. The collapsin response mediator protein 5 onconeural protein is expressed in Schwann cells under axonal signals and regulates axon-Schwann cell interactions. J Neuropathol Exp Neurol. 2012;71:298–311.

    PubMed  Google Scholar 

  89. Yu Z, Kryzer TJ, Griesmann GE, Kim K, Benarroch EE, Lennon VA. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol. 2001;49:146–54.

    PubMed  CAS  Google Scholar 

  90. Honnorat J, Antoine JC, Aguera M, et al. Antibodies to a subpopulation of glial cells and a 66 kD developmental protein in patients with paraneoplastic neurological syndrome. J Neurol Neurosurg Psychiatry. 1996;61:270–8.

    PubMed  CAS  Google Scholar 

  91. Honnorat J, Cartalat-Carel S, Ricard D, Camdessanche JP, Carpentier AF, Rogemond V, et al. Onco-neural antibodies and tumour type determine survival and neurological symptoms in paraneoplastic neurological syndromes with Hu or CV2/CRMP5 antibodies. J Neurol Neurosurg Psychiatry. 2009;80:412–16.

    PubMed  CAS  Google Scholar 

  92. Antoine JC, Honnorat J, Camdessanche JP, et al. Paraneoplastic anti-CV2 antibodies react with peripheral nerve and are associated with a mixed axonal and demyelinating peripheral neuropathy. Ann Neurol. 2001;49:214–21.

    PubMed  CAS  Google Scholar 

  93. Stone JH, Zen Y, Deshpande V. IgG4-related disease. N Engl J Med. 2012;366:539–51.

    PubMed  CAS  Google Scholar 

  94. Takahashi H, Yamamoto M, Tabeya T, Suzuki C, Naishiro Y, Shinomura Y, et al. The immunobiology and clinical characteristics of IgG4 related diseases. J Autoimmun. 2012;39:93–6.

    PubMed  CAS  Google Scholar 

  95. Díaz-Manera J, Martínez-Hernández E, Querol L, Klooster R, Rojas-García R, Suárez-Calvet X, et al. Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology. 2012;78:189–93.

    PubMed  Google Scholar 

  96. Khosroshahi A, Carruthers MN, Deshpande V, Unizony S, Bloch DB, Stone JH. Rituximab for the treatment of IgG4-related disease: lessons from 10 consecutive patients. Medicine (Baltimore). 2012;91:57–66.

    CAS  Google Scholar 

  97. Lindfield D. Rituximab in IgG4-related inflammatory disease of the orbit and ocular adnexae. Eye (Lond). 2012;26(10):1386.

    CAS  Google Scholar 

  98. Morsch M, Reddel SW, Ghazanfari N, Toyka KV, Phillips WD. Muscle specific kinase autoantibodies cause synaptic failure through progressive wastage of postsynaptic acetylcholine receptors. Exp Neurol. 2012;237(2):286–95.

    PubMed  CAS  Google Scholar 

  99. Klooster R, Plomp JJ, Huijbers MG, et al. Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain. 2012;135:1081–101.

    PubMed  Google Scholar 

  100. Pestronk A, Lopate G. Polyneuropathies and antibodies to nerve components. In: Dyck PJ, Thomas PK, editors. Peripheral neuropathy. 4th ed. Philadelphia: Elsevier – Health Sciences Division; 2005. p. 2177–96. Clinical medicine eBook collection. Revised publisher: Saunders (imprint)

    Google Scholar 

  101. Nobile-Orazio E, Giannotta C. Testing for anti-glycolipid IgM antibodies in chronic immune-mediated demyelinating neuropathies. J Peripher Nerv Syst. 2011;16 Suppl 1Suppl 1:18–23.

    PubMed  Google Scholar 

  102. Nobile-Orazio E, Gallia F, Terenghi F, Allaria S, Giannotta C, Carpo M. How useful are anti-neural IgM antibodies in the diagnosis of chronic immune-mediated neuropathies? J Neurol Sci. 2008;266:156–63.

    PubMed  CAS  Google Scholar 

  103. Nobile-Orazio E, Cappellari A, Priori A. Multifocal motor neuropathy: current concepts and controversies. Muscle Nerve. 2005;31:663–80.

    PubMed  Google Scholar 

  104. Pestronk A, Florence J, Miller T, et al. Treatment of IgM antibody associated polyneuropathies using rituximab. J Neurol Neurosurg Psychiatry. 2003;74:485–9.

    PubMed  CAS  Google Scholar 

  105. Dalakas MC. Pathogenesis and treatment of anti-MAG neuropathy. Curr Treat Options Neurol. 2010;12:71–83.

    PubMed  Google Scholar 

  106. Lunn MP, Nobile-Orazio E. Immunotherapy for IgM anti-myelin-associated glycoprotein paraprotein-associated peripheral neuropathies. Cochrane Database Syst. Rev. 2012;5:CD002827

    Google Scholar 

  107. Pestronk A, Choksi R. Multifocal motor neuropathy: serum IgM anti-GM1 ganglioside antibodies in most patients detected using covalent linkage of GM1 to ELISA plates. Neurology. 1997;49:1289–92.

    PubMed  CAS  Google Scholar 

  108. Pestronk A, Chuquilin M, Choksi R. Motor neuropathies and serum IgM binding to NS6S heparin disaccharide or GM1 ganglioside. J Neurol Neurosurg Psychiatry. 2010;81:726–30.

    PubMed  Google Scholar 

  109. Pestronk A, Schmidt RE, Choksi RM, Sommerville RB, Al-Lozi MT. Clinical and laboratory features of neuropathies with serum IgM binding to TS-HDS. Muscle Nerve. 2012;45:866–72.

    PubMed  CAS  Google Scholar 

  110. Muley SA, Parry GJ. Multifocal motor neuropathy. J Clin Neurosci. 2012;307(20):2155–6.

    Google Scholar 

  111. Vlam L, van der Pol WL, Cats EA, et al. Multifocal motor neuropathy: diagnosis, pathogenesis and treatment strategies. Nat Rev Neurol. 2011;8:48–58.

    PubMed  Google Scholar 

  112. Nguyen TP, Chaudhry V. Multifocal motor neuropathy. Neurol India. 2011;59:700–6.

    PubMed  Google Scholar 

  113. Olney RK, Lewis RA, Putnam TD, Campellone Jr JV, American Association of Electrodiagnostic Medicine. Consensus criteria for the diagnosis of multifocal motor neuropathy. Muscle Nerve. 2003;27:117–21.

    PubMed  Google Scholar 

  114. Cats EA, Jacobs BC, Yuki N, Tio-Gillen AP, Piepers S, Franssen H, et al. Multifocal motor neuropathy: association of anti-GM1 IgM antibodies with clinical features. Neurology. 2010;75:1961–7.

    PubMed  CAS  Google Scholar 

  115. Patwa HS, Chaudhry V, Katzberg H, Rae-Grant AD, So YT. Evidence-based guideline: intravenous immunoglobulin in the treatment of neuromuscular disorders: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2012;78:1009–15.

    PubMed  CAS  Google Scholar 

  116. Umapathi T, Hughes RA, Nobile-Orazio E, LĂ©ger JM. Immunosuppressant and immunomodulatory treatments for multifocal motor neuropathy. Cochrane Database Syst. Rev. 2012;4:CD003217.

    Google Scholar 

  117. Nobile-Orazio E, Meucci N, Barbieri S, et al. High dose intravenous immunoglobulin therapy in multifocal motor neuropathy. Neurology. 1993;43:537–44.

    PubMed  CAS  Google Scholar 

  118. Terenghi F, Cappellari A, Bersano A, Carpo M, Barbieri S, Nobile-Orazio E. How long is IVIg effective in multifocal motor neuropathy? Neurology. 2004;62:666–8.

    PubMed  CAS  Google Scholar 

  119. Pestronk A. Multifocal motor neuropathy: diagnosis and treatment. Neurology. 1998;51:S22–4.

    PubMed  CAS  Google Scholar 

  120. Donaghy M, Mills KR, Boniface SJ, Simmons J, Wright I, Gregson N, et al. Pure motor demyelinating neuropathy: deterioration after steroid treatment and improvement with intravenous immunoglobulin. J Neurol Neurosurg Psychiatry. 1994;57:778–83.

    PubMed  CAS  Google Scholar 

  121. Van den Berg LH, Lokhorst H, Wokke JH. Pulsed high-dose dexamethasone is not effective in patients with multifocal motor neuropathy. Neurology. 1997;48:1135.

    PubMed  Google Scholar 

  122. Quarles RH. Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem. 2007;100:1431–48.

    PubMed  CAS  Google Scholar 

  123. Pestronk A, Li F, Bieser K, Choksi R, Whitton A, Kornberg AJ, et al. Anti-MAG antibodies: major effects of antigen purity and antibody cross-reactivity on ELISA results and clinical correlation. Neurology. 1994;44:1131–7.

    PubMed  CAS  Google Scholar 

  124. Jaskowski TD, Prince HE, Greer RW, Litwin CM, Hill HR. Further comparisons of assays for detecting MAG IgM autoantibodies. J Neuroimmunol. 2007;187:175–8.

    PubMed  CAS  Google Scholar 

  125. Pestronk A, Choksi R, Bieser K, et al. Treatable gait disorder and polyneuropathy associated with high titer serum IgM binding to antigens that copurify with myelin-associated glycoprotein. Muscle Nerve. 1994;17:1293–300.

    PubMed  CAS  Google Scholar 

  126. Gertz MA, Buadi FK, Hayman SR. IgM amyloidosis: clinical features in therapeutic outcomes. Clin Lymphoma Myeloma Leuk. 2011;11:146–8.

    PubMed  CAS  Google Scholar 

  127. Van den Berg L, Hays AP, Nobile-Orazio E, et al. Anti-MAG and anti-SGPG antibodies in neuropathy. Muscle Nerve. 1996;19:637–43.

    PubMed  Google Scholar 

  128. Pestronk A, Li F, Griffin J, et al. Polyneuropathy syndromes associated with serum antibodies to sulfatide and myelin-associated glycoprotein. Neurology. 1991;41:357–62.

    PubMed  CAS  Google Scholar 

  129. McMaster J, Gibson G, Castro-Prado F, et al. Neurosurgical treatment of tremor in antimyelin-associated glycoprotein neuropathy. Neurology. 2009;73:1707–8.

    PubMed  CAS  Google Scholar 

  130. Gorson KC, Ropper AH, Weinberg DH, Weinstein R. Treatment experience in patients with antimyelin-associated glycoprotein neuropathy. Muscle Nerve. 2001;24:778.

    PubMed  CAS  Google Scholar 

  131. Niermeijer JM, Fischer K, Eurelings M, Franssen H, Wokke JH, Notermans NC. Prognosis of polyneuropathy due to IgM monoclonal gammopathy: a prospective cohort study. Neurology. 2010;74:406–12.

    PubMed  CAS  Google Scholar 

  132. Kaku DA, England JD, Sumner AJ. Distal accentuation of conduction slowing in polyneuropathy associated with antibodies to myelin-associated glycoprotein and sulphated glucuronyl paragloboside. Brain. 1994;117:941–7.

    PubMed  Google Scholar 

  133. Levine T, Pestronk A, Florence J, Al-Lozi MT, Lopate G, Miller T, et al. Peripheral neuropathies in Waldenström’s macroglobulinemia. J Neurol Neurosurg Psychiatry. 2006;77:224–8.

    PubMed  CAS  Google Scholar 

  134. Lupu VD, Mora CA, Dambrosia J, et al. Terminal latency index in neuropathy with antibodies against myelin-associated glycoproteins. Muscle Nerve. 2007;35:196–202.

    PubMed  CAS  Google Scholar 

  135. Kawagashira Y, Koike H, Tomita M, et al. Morphological progression of myelin abnormalities in IgM-monoclonal gammopathy of undetermined significance anti-myelin-associated glycoprotein neuropathy. J Neuropathol Exp Neurol. 2010;69:1143–57.

    PubMed  CAS  Google Scholar 

  136. Stalder AK, Erne B, Reimann R. Immunoglobulin M deposition in cutaneous nerves of anti-myelin-associated glycoprotein polyneuropathy patients correlates with axonal degeneration. J Neuropathol Exp Neurol. 2009;68:148–58.

    PubMed  CAS  Google Scholar 

  137. Blume G, Pestronk A, Goodnough LT. Anti-MAG antibody associated polyneuropathies: improvement following immunotherapy with monthly plasma exchange and intravenous cyclophosphamide. Neurology. 1995;45:1577–80.

    PubMed  CAS  Google Scholar 

  138. Niermeijer JM, Eurelings M, van der Linden MW, et al. Intermittent cyclophosphamide with prednisone versus placebo for polyneuropathy with IgM monoclonal gammopathy. Neurology. 2007;69:50–9.

    PubMed  CAS  Google Scholar 

  139. Dalakas MC, Rakocevic G, Salajegheh M, et al. Placebo controlled trial of rituximab in IgM anti-myelin associated glycoprotein antibody demyelinating neuropathy. Ann Neurol. 2009;65:286–93.

    PubMed  CAS  Google Scholar 

  140. Pestronk A, Florence J, Miller T, Choksi R, Al-Lozi MT, Levine TD. Treatment of IgM antibody associated polyneuropathies using rituximab. J Neurol Neurosurg Psychiatry. 2003;74:485–9.

    PubMed  CAS  Google Scholar 

  141. Benedetti L, Briani C, Franciotta D, et al. Long term effect of rituximab in anti-MAG polyneuropathy. Neurology. 2008;71:1742–4.

    PubMed  CAS  Google Scholar 

  142. Niermeijer JM, Eurelings M, Lokhorst H, et al. Neurologic and hematologic response to fludarabine treatment in IgM MGUS polyneuropathy. Neurology. 2006;67:2076–9.

    PubMed  CAS  Google Scholar 

  143. Gruson B, Ghomari K, Beaumont M, et al. Long-term response to rituximab and fludarabine combination in IgM anti-myelin-associated glycoprotein neuropathy. J Peripher Nerv Syst. 2011;16:180–5.

    PubMed  CAS  Google Scholar 

  144. Quarles RH, Dalakas MC. Do antiganglioside antibodies cause human peripheral neuropathies? J Clin Invest. 1996;97:1136–7.

    PubMed  CAS  Google Scholar 

  145. Willison HJ, Trapp BD, Bacher JD, Dalakas MC, Griffin JW, Quarles RH. Demyelination induced by intraneural injection of human antimyelin-associated glycoprotein antibodies. Muscle Nerve. 1988;11:1169–76.

    PubMed  CAS  Google Scholar 

  146. Hays AP, Latov N, Takatsu M, Sherman WH. Experimental demyelination of nerve induced by serum of patients with neuropathy and an anti-MAG IgM M-protein. Neurology. 1987;37:242–56.

    PubMed  CAS  Google Scholar 

  147. Monaco S, Ferrari S, Bonetti B, et al. Experimental induction of myelin changes by anti-MAG antibodies and terminal complement complex. J Neuropathol Exp Neurol. 1995;54:96–104.

    PubMed  CAS  Google Scholar 

  148. Tatum AH. Experimental paraprotein neuropathy, demyelination by passive transfer of human IgM anti-myelin-associated glycoprotein. Ann Neurol. 1993;33:502–6.

    PubMed  CAS  Google Scholar 

  149. Ilyas AA, Quarles RH, Dalakas MC, et al. Monoclonal IgM in a patient with paraproteinemic polyneuropathy binds to gangliosides containing disialosyl groups. Ann Neurol. 1985;18:655–9.

    PubMed  CAS  Google Scholar 

  150. Arai M, Yoshino H, Kusano Y, et al. Ataxic polyneuropathy and anti-Pr2 IgM kappa M proteinemia. J Neurol. 1992;239:147–51.

    PubMed  CAS  Google Scholar 

  151. Willison HJ, O’Leary CP, Veitch J, et al. The clinical and laboratory features of chronic sensory ataxic neuropathy with anti-disialosyl IgM antibodies. Brain. 2001;124:1968–77.

    PubMed  CAS  Google Scholar 

  152. Susuki K, Yuki N, Hirata K. Features of sensory ataxic neuropathy associated with anti-GD1b IgM antibody. J Neuroimmunol. 2001;112:181–7.

    PubMed  CAS  Google Scholar 

  153. Attarian S, Boucraut J, Hubert AM, et al. Chronic ataxic neuropathies associated with anti-GD1b IgM antibodies: response to IVIg therapy. J Neurol Neurosurg Psychiatry. 2010;81:61–4.

    PubMed  CAS  Google Scholar 

  154. Siddiqui K, Cahalane E, Keogan M, Hardiman O. Chronic ataxic neuropathy with cold agglutinins: atypical phenotype and response to anti-CD20 antibodies. Neurology. 2003;61:1307–8.

    PubMed  CAS  Google Scholar 

  155. O’Hanlon GM, Veitch J, Gallardo E, et al. Peripheral neuropathy associated with anti-GM2 ganglioside antibodies: clinical and immunopathological studies. Autoimmunity. 2000;32:133–44.

    PubMed  Google Scholar 

  156. Lopate G, Choksi R, Pestronk A. Severe sensory ataxia and demyelinating polyneuropathy with IgM anti-GM2 and GalNAc-GD1a antibodies. Muscle Nerve. 2002;25:828–36.

    PubMed  CAS  Google Scholar 

  157. Kusunoki S, Mashiko H, Mochizuki N, et al. Binding of antibodies against GM1 and GD1b in human peripheral nerve. Muscle Nerve. 1997;20:840–5.

    PubMed  CAS  Google Scholar 

  158. Willison HJ, O’Hanlon GM, Paterson G, et al. A somatically mutated human antiganglioside IgM that induces experimental neuropathy in mice is encoded by the variable region heavy chain gene, V1-V8. J Clin Invest. 1996;97:1155–64.

    PubMed  CAS  Google Scholar 

  159. Ohsawa T, Miyatake T, Yuki N. Anti-B-series ganglioside-­recognizing autoantibodies in an acute sensory neuropathy patient cause cell death of rat dorsal root ganglion neurons. Neurosci Lett. 1993;157:167–70.

    PubMed  CAS  Google Scholar 

  160. Vos JP, Lopes-Cardozo M, Gadella BM. Metabolic and functional aspects of sulfogalactolipids. Biochim Biophys Acta. 1994;1211:125–49.

    PubMed  CAS  Google Scholar 

  161. Winzeler AM, Mandemakers WJ, Sun MZ, Stafford M, Phillips CT, Barres BA. The lipid sulfatide is a novel myelin-associated inhibitor of CNS axon outgrowth. J Neurosci. 2011;31:6481–92.

    PubMed  CAS  Google Scholar 

  162. Lopate G, Parks BJ, Goldstein JM, Yee WC, Friesenhahn GM, Pestronk A. Polyneuropathies associated with high titre antisulphatide antibodies: characteristics of patients with and without serum monoclonal proteins. J Neurol Neurosurg Psychiatry. 1997;62:581–5.

    PubMed  CAS  Google Scholar 

  163. Erb S, Ferracin F, Fuhr P, et al. Polyneuropathy attributes: a comparison between patients with anti-MAG and anti-sulfatide antibodies. J Neurol. 2000;247:767–72.

    PubMed  CAS  Google Scholar 

  164. Petratos S, Turnbull VJ, Papadopoulos R, Ayers M, Gonzales MF. High-titre IgM anti-sulfatide antibodies in individuals with IgM paraproteinaemia and associated peripheral neuropathy. Immunol Cell Biol. 2000;78:124–32.

    PubMed  CAS  Google Scholar 

  165. Carpo M, Meucci N, Allaria S, Marmiroli P, Monaco S, Toscano A, et al. Anti-sulfatide IgM antibodies in peripheral neuropathy. J Neurol Sci. 2000;176:144–50.

    PubMed  CAS  Google Scholar 

  166. Lopate G, Pestronk A, Evans S, Li L, Clifford D. Anti-sulfatide antibodies in HIV-infected individuals with sensory neuropathy. Neurology. 2005;64:1632–4.

    PubMed  CAS  Google Scholar 

  167. Petratos S, Turnbull VJ, Papadopoulos R, et al. High titre anti-sulphatide antibodies in HIV-infected individuals. Neuroreport. 1999;10:2557–62.

    PubMed  CAS  Google Scholar 

  168. Avila JL, Rojas M, Carrasco H. Elevated levels of antibodies against sulphatide are present in all chronic chagasic and non-chagasic dilatory cardiomyopathy sera. Clin Exp Immunol. 1993;92:460–5.

    PubMed  CAS  Google Scholar 

  169. Ferrari S, Morbin M, Nobile Orazio E, et al. Antisulfatide polyneuropathy: antibody-mediated complement attack on peripheral myelin. Acta Neuropathol. 1998;96:569–74.

    PubMed  CAS  Google Scholar 

  170. Quattrini A, Corbo M, Dhaliwal SK, et al. Anti-sulfatide antibodies in neurological disease: binding to rat dorsal root ganglia neurons. J Neurol Sci. 1992;112:152–9.

    PubMed  CAS  Google Scholar 

  171. Lopate G, Pestronk A, Kornberg AJ, Yue J, Choksi R. IgM anti-sulfatide autoantibodies: patterns of binding to cerebellum, dorsal root ganglion and peripheral nerve. J Neurol Sci. 1997;151:189–93.

    PubMed  CAS  Google Scholar 

  172. Qin Z, Guan Y. Experimental polyneuropathy produced in guinea pigs immunized against sulfatide. Neuroreport. 1997;8:2867–70.

    PubMed  CAS  Google Scholar 

  173. Nardelli E, Bassi A, Mazzi G, et al. Systemic passive transfer studies using IgM monoclonal antibodies to sulfatide. J Neuroimmunol. 1995;63:29–37.

    PubMed  CAS  Google Scholar 

  174. Ariga T. The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87:386–404.

    PubMed  CAS  Google Scholar 

  175. Lopate G, Kornberg AJ, Yue J, et al. Anti-myelin associated glycoprotein antibodies: variability in patterns of IgM binding to peripheral nerve. J Neurol Sci. 2001;188:67–72.

    PubMed  CAS  Google Scholar 

  176. Rowland LP, Sherman WH, Hays AP, et al. Autopsy proven amyotrophic lateral sclerosis, Waldenström’s macroglobulinemia, and antibodies to sulfated glucuronic acid paragloboside. Neurology. 1995;45:827–9.

    PubMed  CAS  Google Scholar 

  177. Weiss MD, Dalakas MC, Lauter CJ, et al. Variability in the binding of anti-MAG and anti-SGPG antibodies to target antigens in demyelinating neuropathy and IgM paraproteinemia. J Neuroimmunol. 1999;95:174.

    PubMed  CAS  Google Scholar 

  178. Ilyas AA, Gu Y, Dalakas MC, et al. Induction of experimental ataxic sensory neuronopathy in cats by immunization with purified SGPG. J Neuroimmunol. 2008;193:87–93.

    PubMed  CAS  Google Scholar 

  179. Connolly AM, Pestronk A, Trotter JL, Feldman EL, Cornblath DR, Olney RK. High titer selective anti-β-tubulin antibodies in chronic inflammatory demyelinating polyneuropathy. Neurology. 1993;43:557–62.

    PubMed  CAS  Google Scholar 

  180. Connolly AM, Pestronk A, Mehta S, Yee WC, Green BJ, Fellin C, et al. Serum IgM monoclonal autoantibody binding to the 301 to 314 amino acid epitope of beta-tubulin: clinical association with slowly progressive demyelinating polyneuropathy. Neurology. 1997;48:243–8.

    PubMed  CAS  Google Scholar 

  181. Tagawa Y, Yuki N, Hirata K. The 301 to 314 amino acid residue of beta-tubulin is not a target epitope for serum IgM antibodies in chronic inflammatory demyelinating polyneuropathy. J Neurol Sci. 1999;163:44–6.

    PubMed  CAS  Google Scholar 

  182. Brindel I, Preudhomme JL, Diaz JJ, Giraud C, Vallat JM, Jauberteau MO. A human monoclonal IgM lambda specific for an epitope shared by the 200 kDa neurofilament protein, histones and ribosomal proteins. J Autoimmun. 1995;8:915–29.

    PubMed  CAS  Google Scholar 

  183. Salih AM, Nixon NB, Dawes PT, Mattey DL. Prevalence of antibodies to neurofilament polypeptides in patients with rheumatoid arthritis complicated by peripheral neuropathy. Clin Exp Rheumatol. 1998;16:689–94.

    PubMed  CAS  Google Scholar 

  184. Ortiz N, Rosa R, Gallardo E, et al. IgM monoclonal antibody against terminal moiety of GM2, GalNAc-GD1a and GalNAc-GD1b from a pure motor chronic demyelinating polyneuropathy patient: effects of neurotransmitter release. J Neuroimmunol. 2001;119:114–23.

    PubMed  CAS  Google Scholar 

  185. Kyle RA, Rajkumar V. Monoclonal gammopathy of undetermined significance. In: Lonial S, editor. Myeloma therapy: pursuing the plasma cell. Totowa: Humana; 2009. p. 629–49.

    Google Scholar 

  186. Zivković SA, Lacomis D, Lentzsch S. Paraproteinemic neuropathy. Leuk Lymphoma. 2009;50:1422–33.

    PubMed  Google Scholar 

  187. Suarez GA, Kelly Jr JJ. Polyneuropathy associated with monoclonal gammopathy of undetermined significance: further evidence that IgM-MGUS neuropathies are different than IgG-MGUS. Neurology. 1993;43:1304–8.

    PubMed  CAS  Google Scholar 

  188. Dispenzieri A. POEMS syndrome: update on diagnosis, risk-stratification, and management. Am J Hematol. 2012;87:804–14.

    PubMed  Google Scholar 

  189. Dispenzieri A. POEMS syndrome and other atypical plasma cell disorders. In: Lonial S, editor. Myeloma therapy: pursuing the plasma cell. Humana: Totowa; 2009. p. 571–623.

    Google Scholar 

  190. Klein CJ, Moon JS, Mauermann ML, Zeldenrust SR, Wu Y, Dispenzieri A, et al. The neuropathies of Waldenström’s macroglobulinemia (WM) and IgM-MGUS. Can J Neurol Sci. 2011;38:289–95.

    PubMed  Google Scholar 

  191. Klein CJ, Vrana JA, Theis JD, et al. Mass spectrometric-based proteomic analysis of amyloid neuropathy type in nerve tissue. Arch Neurol. 2010;68:195–9.

    PubMed  Google Scholar 

  192. Tracy JA, Dyck PJ, Dyck PJ. Primary amyloidosis presenting as upper limb multiple mononeuropathies. Muscle Nerve. 2010;41:710–15.

    PubMed  Google Scholar 

  193. Figueroa JJ, Bosch EP, Dyck PJ, et al. Amyloid-like IgM deposition neuropathy: a distinct clinico-pathologic and proteomic profiled disorder. J Peripher Nerv Syst. 2012;17:182–90.

    PubMed  Google Scholar 

  194. Gemignani F, Brindani F, Alfieri S, et al. Clinical spectrum of cryoglobulinaemic neuropathy. J Neurol Neurosurg Psychiatry. 2005;76:1410–14.

    PubMed  CAS  Google Scholar 

  195. Peter LM, Ammoury A, Chiavassa-Gandois H, Lamant L, Paul CF. Scleromyxoedema with associated peripheral neuropathy: successful treatment with thalidomide. Clin Exp Dermatol. 2008;33:606–10.

    PubMed  CAS  Google Scholar 

  196. Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of paraproteinemic demyelinating neuropathies. Report of a Joint Task Force of the European Federation of Neurological Societies and the Peripheral Nerve Society – first revision. J Peripher Nerv Syst. 2010;15:185–95.

    Google Scholar 

  197. Mauermann ML, Sorenson EJ, Dispenzieri A, Mandrekar J, Suarez GA, Dyck PJ, et al. Uniform demyelination and more severe axonal loss distinguish POEMS syndrome from CIDP. J Neurol Neurosurg Psychiatry. 2012;83:480–6.

    PubMed  Google Scholar 

  198. Nasu S, Misawa S, Sekiguchi Y, Shibuya K, Kanai K, Fujimaki Y, et al. Different neurological and physiological profiles in POEMS syndrome and chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry. 2012;83:476–9.

    PubMed  Google Scholar 

  199. D’Souza A, Hayman SR, Buadi F, Mauermann M, et al. The utility of plasma vascular endothelial growth factor levels in the diagnosis and follow-up of patients with POEMS syndrome. Blood. 2011;118:4663–5.

    PubMed  Google Scholar 

  200. Kanai K, Sawai S, Sogawa K, et al. Markedly upregulated serum interleukin-12 as a novel biomarker in POEMS syndrome. Neurology. 2012;79(6):575–82.

    PubMed  CAS  Google Scholar 

  201. Luigetti M, Frisullo G, Laurenti L, et al. Light chain deposition in peripheral nerve as a cause of mononeuritis multiplex in Waldenström’s macroglobulinaemia. J Neurol Sci. 2010;291:89–91.

    PubMed  CAS  Google Scholar 

  202. Stone MJ. Waldenström’s macroglobulinemia: hyperviscosity syndrome and cryoglobulinemia. Clin Lymphoma Myeloma. 2009;9:97–9.

    PubMed  Google Scholar 

  203. Ferri C. Mixed cryoglobulinemia. Orphanet J Rare Dis. 2008;3:25.

    PubMed  Google Scholar 

  204. Quartuccio L, Isola M, Corazza L, et al. Performance of the preliminary classification criteria for cryoglobulinaemic vasculitis and clinical manifestations in hepatitis C virus-unrelated ­cryoglobulinaemic vasculitis. Clin Exp Rheumatol. 2012;30(1 Suppl 70):S48–52.

    PubMed  Google Scholar 

  205. Foessel L, Besancenot JF, Blaison G, et al. Clinical spectrum, treatment, and outcome of patients with type II mixed cryoglobulinemia without evidence of hepatitis C infection. J Rheumatol. 2011;38:716–22.

    PubMed  Google Scholar 

  206. Mascia MT, Ferrari D, Campioli D, Sandri G, Mussini C, Ferri C. Non HCV-related mixed cryoglobulinemia. Dig Liver Dis. 2007;39 Suppl 1Suppl 1:S61–4.

    PubMed  Google Scholar 

  207. Ferri C, Mascia MT. Cryoglobulinemic vasculitis. Curr Opin Rheumatol. 2006;18:54–63.

    PubMed  Google Scholar 

  208. De Vita S, Quartuccio L, Isola M, et al. A randomized controlled trial of rituximab for the treatment of severe cryoglobulinemic vasculitis. Arthritis Rheum. 2012;64:843–53.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Pestronk MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pestronk, A. (2014). Autoantibody Testing in Peripheral Neuropathy. In: Katirji, B., Kaminski, H., Ruff, R. (eds) Neuromuscular Disorders in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6567-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6567-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6566-9

  • Online ISBN: 978-1-4614-6567-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics