The Core Molecular Machinery of Autophagosome Formation

Chapter
Part of the Current Cancer Research book series (CUCR, volume 8)

Abstract

Autophagy is a conserved cytoplasmic process from yeast to mammals, by which cells degrade and recycle their intracellular components. During macroautophagy, a unique compartment, named the autophagosome, is formed to engulf the cargos and send them to the vacuole or lysosome. Whether the cargos are nonspecifically sequestered, as occurs in most types of macroautophagy, or specifically selected, such as in the cytoplasm-to-vacuole targeting pathway or selective mitochondria degradation, a common set of molecular machinery is required for the formation of the autophagosome. In this chapter, we summarize our knowledge about the roles and regulation of these core machinery components in autophagosome formation, in both yeast and mammalian systems.

Keywords

Autophagy Lysosome Phagophore Protein degradation Stress Protein trafficking Vacuole 

References

  1. Abeliovich H et al (2003) Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol Biol Cell 14:477–490PubMedCrossRefGoogle Scholar
  2. Axe EL et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701PubMedCrossRefGoogle Scholar
  3. Baskaran S et al (2012) Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell 47:339–348PubMedCrossRefGoogle Scholar
  4. Chan EY (2009) mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci Signal 2:pe51PubMedCrossRefGoogle Scholar
  5. Chan EYW, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 282:25464–25474PubMedCrossRefGoogle Scholar
  6. Chang CY, Huang W-P (2007) Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy. Mol Biol Cell 18:919–929PubMedCrossRefGoogle Scholar
  7. Cheong H et al (2005) Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 16:3438–3453PubMedCrossRefGoogle Scholar
  8. Cheong H et al (2008) The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell 19:668–681PubMedCrossRefGoogle Scholar
  9. Fimia GM et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125PubMedGoogle Scholar
  10. Fujita N et al (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19:2092–2100 Fujioka Y et al (2010) Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem 285:1508–1515PubMedCrossRefGoogle Scholar
  11. Furuya N et al (2005) The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1:46–52PubMedCrossRefGoogle Scholar
  12. Furuya T et al (2010) Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 38:500–511PubMedCrossRefGoogle Scholar
  13. Ganley IG et al (2009) ULK1 · ATG13 · FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305PubMedCrossRefGoogle Scholar
  14. Guan J et al (2001) Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 12:3821–3838PubMedGoogle Scholar
  15. Hanada T et al (2007) The Atg12–Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298–37302PubMedCrossRefGoogle Scholar
  16. Hara T et al (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181:497–510PubMedCrossRefGoogle Scholar
  17. Harding TM et al (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131:591–602PubMedCrossRefGoogle Scholar
  18. He C et al (2006) Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 175:925–935PubMedCrossRefGoogle Scholar
  19. Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429PubMedCrossRefGoogle Scholar
  20. Hosokawa N et al (2009a) Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991PubMedCrossRefGoogle Scholar
  21. Hosokawa N et al (2009b) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:973–979PubMedCrossRefGoogle Scholar
  22. Huang W-P et al (2000) The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 275:5845–5851PubMedCrossRefGoogle Scholar
  23. Huang W et al (2012) Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res 22:473–489PubMedCrossRefGoogle Scholar
  24. Ichimura Y et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492PubMedCrossRefGoogle Scholar
  25. Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776PubMedCrossRefGoogle Scholar
  26. Itakura E et al (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372PubMedCrossRefGoogle Scholar
  27. Juhasz G et al (2008) The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol 181:655–666PubMedCrossRefGoogle Scholar
  28. Jung CH et al (2009) ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003PubMedCrossRefGoogle Scholar
  29. Kabeya Y et al (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812PubMedCrossRefGoogle Scholar
  30. Kabeya Y et al (2005) Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16:2544–2553PubMedCrossRefGoogle Scholar
  31. Kabeya Y et al (2007) Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 356:405–410PubMedCrossRefGoogle Scholar
  32. Kamada Y et al (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513PubMedCrossRefGoogle Scholar
  33. Kametaka S et al (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast Saccharomyces cerevisiae. J Biol Chem 273:22284–22291PubMedCrossRefGoogle Scholar
  34. Kawamata T et al (2005) Characterization of a novel autophagy-specific gene, ATG29. Biochem Biophys Res Commun 338:1884–1889PubMedCrossRefGoogle Scholar
  35. Kawamata T et al (2008) Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell 19:2039–2050PubMedCrossRefGoogle Scholar
  36. Kihara A et al (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530PubMedCrossRefGoogle Scholar
  37. Kirisako T et al (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276PubMedCrossRefGoogle Scholar
  38. Klionsky DJ et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545PubMedCrossRefGoogle Scholar
  39. Kobayashi T, Suzuki K, Ohsumi Y (2012) Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett 586:2473–2478PubMedCrossRefGoogle Scholar
  40. Krick R et al (2012) Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a beta-propeller protein family. Proc Natl Acad Sci USA 109:E2042–E2049PubMedCrossRefGoogle Scholar
  41. Kuma A et al (2002) Formation of the approximately 350-kDa Apg12–Apg5–Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277:18619–18625PubMedCrossRefGoogle Scholar
  42. Kundu M et al (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112:1493–1502PubMedCrossRefGoogle Scholar
  43. Legakis JE, Yen W-L, Klionsky DJ (2007) A cycling protein complex required for selective autophagy. Autophagy 3:422–432PubMedGoogle Scholar
  44. Li M et al (2011) Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J Biol Chem 286:7327–7338PubMedCrossRefGoogle Scholar
  45. Liang XH et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676PubMedCrossRefGoogle Scholar
  46. Liang C et al (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699PubMedCrossRefGoogle Scholar
  47. Lin SY et al (2012) GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336:477–481PubMedCrossRefGoogle Scholar
  48. Matsunaga K et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396PubMedCrossRefGoogle Scholar
  49. Matsuura A et al (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192:245–250PubMedCrossRefGoogle Scholar
  50. Mercer CA, Kaliappan A, Dennis PB (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:649–662PubMedCrossRefGoogle Scholar
  51. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132–139PubMedCrossRefGoogle Scholar
  52. Mizushima N et al (1998) A protein conjugation system essential for autophagy. Nature 395:395–398PubMedCrossRefGoogle Scholar
  53. Mizushima N, Noda T, Ohsumi Y (1999) Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway. EMBO J 18:3888–3896PubMedCrossRefGoogle Scholar
  54. Mizushima N et al (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668PubMedCrossRefGoogle Scholar
  55. Mizushima N, Yoshimori T, Ohsumi Y (2002) Mouse Apg10 as an Apg12-conjugating enzyme: analysis by the conjugation-mediated yeast two-hybrid method. FEBS Lett 532:450–454PubMedCrossRefGoogle Scholar
  56. Mizushima N et al (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J Cell Sci 116:1679–1688PubMedCrossRefGoogle Scholar
  57. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132PubMedCrossRefGoogle Scholar
  58. Monastyrska I et al (2008) Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell 19:1962–1975PubMedCrossRefGoogle Scholar
  59. Nair U et al (2012) A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8(5):780–793PubMedCrossRefGoogle Scholar
  60. Nakatogawa H et al (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467PubMedCrossRefGoogle Scholar
  61. Nice DC et al (2002) Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 277:30198–30207PubMedCrossRefGoogle Scholar
  62. Noda T et al (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148:465–480PubMedCrossRefGoogle Scholar
  63. Obara K, Sekito T, Ohsumi Y (2006) Assortment of phosphatidylinositol 3-kinase complexes–Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell 17:1527–1539PubMedCrossRefGoogle Scholar
  64. Obara K et al (2008) Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes Cells 13:537–547PubMedCrossRefGoogle Scholar
  65. Orsi A et al (2012) Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 23:1860–1873PubMedCrossRefGoogle Scholar
  66. Petiot A et al (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998PubMedCrossRefGoogle Scholar
  67. Polson HE et al (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6:506–522Google Scholar
  68. Reggiori F et al (2004) The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6:79–90PubMedCrossRefGoogle Scholar
  69. Reggiori F et al (2005) Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1:101–109PubMedCrossRefGoogle Scholar
  70. Sekito T et al (2009) Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells 14:525–538PubMedCrossRefGoogle Scholar
  71. Shintani T et al (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 18:5234–5241PubMedCrossRefGoogle Scholar
  72. Shintani T et al (2001) Apg2p functions in autophagosome formation on the perivacuolar structure. J Biol Chem 276:30452–30460PubMedCrossRefGoogle Scholar
  73. Skwarek LC, Boulianne GL (2009) Great expectations for PIP: phosphoinositides as regulators of signaling during development and disease. Dev Cell 16:12–20PubMedCrossRefGoogle Scholar
  74. Stack JH, Emr SD (1994) Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specific PI 3-kinase activities. J Biol Chem 269:31552–31562PubMedGoogle Scholar
  75. Stack JH et al (1993) A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 12:2195–2204PubMedGoogle Scholar
  76. Stack JH et al (1995) Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J Cell Biol 129:321–334PubMedCrossRefGoogle Scholar
  77. Straub M, Bredschneider M, Thumm M (1997) AUT3, a serine/threonine kinase gene, is essential for autophagocytosis in Saccharomyces cerevisiae. J Bacteriol 179:3875–3883PubMedGoogle Scholar
  78. Stromhaug PE, Klionsky DJ (2001) Approaching the molecular mechanism of autophagy. Traffic 2:524–531PubMedCrossRefGoogle Scholar
  79. Stromhaug PE et al (2004) Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 15:3553–3566PubMedCrossRefGoogle Scholar
  80. Sugawara K et al (2004) The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 9:611–618PubMedCrossRefGoogle Scholar
  81. Sun Q et al (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 105:19211–19216PubMedCrossRefGoogle Scholar
  82. Suzuki NN et al (2005) The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy 1:119–126PubMedCrossRefGoogle Scholar
  83. Suzuki K et al (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–218PubMedCrossRefGoogle Scholar
  84. Takahashi Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9:1142–1151PubMedCrossRefGoogle Scholar
  85. Tanida I et al (1999) Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10:1367–1379PubMedGoogle Scholar
  86. Tanida I et al (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a protein-­activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276:1701–1706PubMedGoogle Scholar
  87. Tanida I et al (2002) Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem 277:13739–13744PubMedCrossRefGoogle Scholar
  88. Tanida I et al (2003) GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3. Biochem Biophys Res Commun 300:637–644PubMedCrossRefGoogle Scholar
  89. Tanida I et al (2006) Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS J 273:2553–2562PubMedCrossRefGoogle Scholar
  90. Thumm M et al (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349:275–280PubMedCrossRefGoogle Scholar
  91. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174PubMedCrossRefGoogle Scholar
  92. Tucker KA et al (2003) Atg23 is essential for the cytoplasm to vacuole targeting pathway and efficient autophagy but not pexophagy. J Biol Chem 278:48445–48452PubMedCrossRefGoogle Scholar
  93. Wang C-W et al (2001) Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J Biol Chem 276:30442–30451PubMedCrossRefGoogle Scholar
  94. Weidberg H et al (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29:1792–1802PubMedCrossRefGoogle Scholar
  95. Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80:125–156PubMedCrossRefGoogle Scholar
  96. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109PubMedCrossRefGoogle Scholar
  97. Xie Z, Nair U, Klionsky DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19:3290–3298PubMedCrossRefGoogle Scholar
  98. Yamada T et al (2005) Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem 280:18283–18290PubMedCrossRefGoogle Scholar
  99. Yan Y et al (2009) hVps15, but not Ca2+/CaM, is required for the activity and regulation of hVps34 in mammalian cells. Biochem J 417:747–755PubMedCrossRefGoogle Scholar
  100. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32PubMedCrossRefGoogle Scholar
  101. Yeh YY, Wrasman K, Herman PK (2010) Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics 185:871–882PubMedCrossRefGoogle Scholar
  102. Yen W-L et al (2007) Atg27 is required for autophagy-dependent cycling of Atg9. Mol Biol Cell 18:581–593PubMedCrossRefGoogle Scholar
  103. Yorimitsu T et al (2007) Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 18:4180–4189PubMedCrossRefGoogle Scholar
  104. Young ARJ et al (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119:3888–3900PubMedCrossRefGoogle Scholar
  105. Yu ZQ et al (2012) Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8:883–892PubMedGoogle Scholar
  106. Zeng X, Overmeyer JH, Maltese WA (2006) Functional specificity of the mammalian Beclin-­Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 119:259–270PubMedCrossRefGoogle Scholar
  107. Zhong Y et al (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Life Sciences InstituteUniversity of MichiganAnn ArborUSA

Personalised recommendations