Interphase Chromosome-Specific Multicolor Banding



Interphase chromosome-specific multicolor banding (ICS-MCB) is a FISH-based technique for studying interphase chromosomes in their integrity at molecular resolution in single cells. To date, this is the only method providing for visualizing the whole chromosome and its specific regions together at any stage of the cell cycle. Offering such opportunity, ICS-MCB has repeatedly proven effective in molecular cytogenetic studies of interphase chromosomes (i.e., surveying genomic variations at the chromosomal level in different human tissues and characterizing interphase genome/chromosome organization and behavior). The intention of this chapter is to describe the basics of ICS-MCB procedure and its applications in different biomedical fields. The advantages of this technique allow speculations that it has to become a method of choice in somatic cell genetics as well as in cell and chromosome biology.


Interphase Nucleus Molecular Resolution Chromosomal Mosaicism Interphase Chromosome Homologous Chromosome Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are supported by DLR/BMBF (RUS 2011-2013) and RFBR grant 12-04-00215-а (Russian Federation, 2012–2014). The authors also acknowledge the NICHD Brain and Tissue Bank for Developmental Disorders at the University of Maryland, Baltimore, MD, USA, for providing the brain tissue samples studied by ICS-MCB (Fig. 9.2). Dr. IY Iourov is supported by the Grant of the President of the Russian Federation MD-4401.2013.7.


  1. Claussen U (2005) Chromosomics. Cytogenet Genome Res 111:101–106PubMedCrossRefGoogle Scholar
  2. Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2:a003889PubMedCrossRefGoogle Scholar
  3. Iourov IY (2012) To see an interphase chromosome or: how a disease can be associated with specific nuclear genome organization. Biodiscovery 4:5. doi: 10.7750/BioDiscovery.2012.4.5 Google Scholar
  4. Iourov IY, Liehr T, Vorsanova SG, Kolotii AD, Yurov YB (2006a) Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding (MCB). Chromosome Res 14:223–229PubMedCrossRefGoogle Scholar
  5. Iourov IY, Vorsanova SG, Pellestor F, Yurov YB (2006b) Brain tissue preparations for chromosomal PRINS labeling. Methods Mol Biol 334:123–132PubMedGoogle Scholar
  6. Iourov IY, Vorsanova SG, Yurov YB (2006c) Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol 249:143–191PubMedCrossRefGoogle Scholar
  7. Iourov IY, Liehr T, Vorsanova SG, Yurov YB (2007) Interphase chromosome-specific multicolor banding (ICS-MCB): a new tool for analysis of interphase chromosomes in their integrity. Biomol Eng 24:415–417PubMedCrossRefGoogle Scholar
  8. Iourov IY, Vorsanova SG, Yurov YB (2008a) Chromosomal mosaicism goes global. Mol Cytogenet 1:26PubMedCrossRefGoogle Scholar
  9. Iourov IY, Vorsanova SG, Yurov YB (2008b) Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics 9:452–465PubMedCrossRefGoogle Scholar
  10. Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Yurov YB (2009a) Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet 18:2656–2669PubMedCrossRefGoogle Scholar
  11. Iourov IY, Vorsanova SG, Liehr T, Yurov YB (2009b) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34:212–220PubMedCrossRefGoogle Scholar
  12. Iourov IY, Vorsanova SG, Soloviev IV, Yurov YB (2009c) Interphase FISH: detection of intercellular genomic variations and somatic chromosomal mosaicism. In: Liehr T (ed) Fluorescence in situ hybridization (FISH): application guide. Springer, Berlin, pp 301–311CrossRefGoogle Scholar
  13. Iourov IY, Vorsanova SG, Yurov YB (2010) Somatic genome variations in health and disease. Curr Genomics 11:387–396PubMedCrossRefGoogle Scholar
  14. Lemke J, Claussen J, Michel S, Chudoba I, Mühlig P, Westermann M, Sperling K, Rubtsov N, Grummt UW, Ullmann P, Kromeyer-Hauschild K, Liehr T, Claussen U (2002) The DNA-based structure of human chromosome 5 in interphase. Am J Hum Genet 71:1051–1059PubMedCrossRefGoogle Scholar
  15. Liehr T (ed) (2009) Fluorescence in situ hybridization (FISH): application guide. Springer, BerlinGoogle Scholar
  16. Liehr T, Heller A, Starke H, Rubtsov N, Trifonov V, Mrasek K, Weise A, Kuechler A, Claussen U (2002) Microdissection-based high resolution multicolor banding for all 24 human chromosomes. Int J Mol Med 9:335–339PubMedGoogle Scholar
  17. Liehr T, Weise A, Hinreiner S, Mkrtchyan H, Mrasek K, Kosyakova N (2010) Characterization of chromosomal rearrangements using multicolor-banding (MCB/m-band). Methods Mol Biol 659:231–238PubMedCrossRefGoogle Scholar
  18. Manvelyan M, Hunstig F, Bhatt S, Mrasek K, Pellestor F, Weise A, Simonyan I, Aroutiounian R, Liehr T (2008a) Chromosome distribution in human sperm: a 3D multicolor banding-study. Mol Cytogenet 1:25PubMedCrossRefGoogle Scholar
  19. Manvelyan M, Hunstig F, Mrasek K, Bhatt S, Pellestor F, Weise A, Liehr T (2008b) Position of chromosomes 18, 19, 21 and 22 in 3D-preserved interphase nuclei of human and gorilla and white hand gibbon. Mol Cytogenet 1:9PubMedCrossRefGoogle Scholar
  20. Manvelyan M, Kempf P, Weise A, Mrasek K, Heller A, Lier A, Höffken K, Fricke HJ, Sayer HG, Liehr T, Mkrtchyan H (2009) Preferred co-localization of chromosome 8 and 21 in myeloid bone marrow cells detected by three dimensional molecular cytogenetics. Int J Mol Med 24:335–341PubMedGoogle Scholar
  21. Vorsanova SG, Yurov YB, Iourov IY (2010a) Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 3:1PubMedCrossRefGoogle Scholar
  22. Vorsanova SG, Yurov YB, Soloviev IV, Iourov IY (2010b) Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics 11:440–446PubMedCrossRefGoogle Scholar
  23. Weise A, Starke H, Heller A, Uwe C, Liehr T (2002) Evidence for interphase DNA decondensation transverse to the chromosome axis: a multicolor banding analysis. Int J Mol Med 9:359–361PubMedGoogle Scholar
  24. Yurov YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI, Pellestor F, Beresheva AK, Demidova IA, Kravets VS, Monakhov VV, Soloviev IV (2007) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One 2:e558PubMedCrossRefGoogle Scholar
  25. Yurov YB, Iourov IY, Vorsanova SG, Demidova IA, Kravetz VS, Beresheva AK, Kolotii AD, Monakchov VV, Uranova NA, Vostrikov VM, Soloviev IV, Liehr T (2008) The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 98:139–147PubMedCrossRefGoogle Scholar
  26. Yurov YB, Vorsanova SG, Iourov IY (2010) Ontogenetic variation of the human genome. Curr Genomics 11:420–425PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Mental Health Research Center, Russian Academy of Medical SciencesMoscowRussia
  2. 2.Institute of Pediatrics and Children Surgery, Ministry of HealthMoscowRussia
  3. 3.Jena University Hospital, Institute of Human Genetics, Friedrich Schiller UniversityJenaGermany
  4. 4.Moscow City University of Psychology and EducationMoscowRussia

Personalised recommendations