Interphase Cytogenetics at the Earliest Stages of Human Development



The widespread use of in vitro fertilization (IVF) throughout the world provides the opportunity to study human development at the very earliest stages before implantation. Nonetheless, the study of human embryos poses a series of unique ethical and moral implications. The unique totipotent nature of a human embryo and its potential to develop into a child necessitates a level of restriction and regulatory control that is not present when studying other cell types. Although some governments outlaw any experimental procedure on human embryonic material, others allow it under appropriate control. In the latter case (e.g., in the UK), experimentation can be justified on the basis of development of a diagnostic test and/or the goal of improving patient care. A further challenge to effective study is the paucity of material available. Much of the work reported in this chapter arises from the study of only single nuclei. For these reasons, research on interphase cytogenetics in human preimplantation embryos is less advanced than in other cell types. Despite this, a fundamental insight into chromosome copy number and nuclear organization can be gleaned from this material through collaboration with an appropriate clinical program. As attested by other chapters in this book, fluorescent in situ hybridization (FISH) was first adopted for research, but clinical applications rapidly followed. Prenatal and cancer diagnostics are the best examples of this,, but the increasing use of assisted reproductive technologies, namely IVF, precipitated the use of FISH in the field of preimplantation genetic diagnosis (PGD). PGD is defined as the diagnosis of genetic disorders in human preimplantation embryos. The purpose is selective implantation of unaffected embryos in the hope of establishing genetically normal ongoing pregnancies. PGD by interphase cytogenetics was first applied for sexing (to screen for sex-linked disorders), then for chromosome translocations, and later for chromosome copy number. In the latter case, termed preimplantation genetic screening (PGS), families at risk of adverse obstetrical outcomes (referral categories include advanced maternal age and recurrent miscarriage) are targeted, rather than families at risk of transmitting inherited disorders in a classical Mendelian fashion. Clinical application of interphase cytogenetics in the IVF world has allowed the subsequent study of chromosome copy number and nuclear organization. This chapter provides an overview of interphase cytogenetics in human embryos, highlighting the progress and the sometimes contentious pitfalls that it has encountered.


Assisted Reproductive Technology Human Embryo Preimplantation Genetic Diagnosis Single Nucleotide Polymorphism Array Preimplantation Genetic Screening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baart EB et al (2007) FISH analysis of 15 chromosomes in human day 4 and 5 preimplantation embryos: the added value of extended aneuploidy detection. Prenat Diagn 27(1):55–63PubMedCrossRefGoogle Scholar
  2. Beyer CE et al (2009) Preimplantation genetic screening outcomes are associated with culture conditions. Hum Reprod 24(5):1212–1220PubMedCrossRefGoogle Scholar
  3. Brezina PR, Brezina PR et al (2011) Single-gene testing combined with single nucleotide polymorphism microarray preimplantation genetic diagnosis for aneuploidy: a novel approach in optimizing pregnancy outcome. Fertil Steril 95(5):1786e5–1786e8CrossRefGoogle Scholar
  4. Chang LJ et al (2011) An update of preimplantation genetic diagnosis in gene diseases, chromosomal translocation, and aneuploidy screening. Clin Exp Reprod Med 38(3):126–134PubMedCrossRefGoogle Scholar
  5. Checa MA et al (2009) IVF/ICSI with or without preimplantation genetic screening for aneuploidy in couples without genetic disorders: a systematic review and meta-analysis. J Assist Reprod Genet 26(5):273–283PubMedCrossRefGoogle Scholar
  6. Chen Y et al (2007) A normal birth following preimplantation genetic diagnosis by FISH determination in the carriers of der(15)t(Y;15)(Yq12;15p11) translocations: two case reports. J Assist Reprod Genet 24(10):483–488PubMedCrossRefGoogle Scholar
  7. Chiamchanya C et al (2008) Preimplantation genetic screening (PGS) in infertile female age > or = 35 years by fluorescence in situ hybridization of chromosome 13, 18, 21, X and Y. J Med Assoc Thai 91(11):1644–1650PubMedGoogle Scholar
  8. Cohen J, Grifo JA (2007) Multicentre trial of preimplantation genetic screening reported in the New England Journal of Medicine: an in-depth look at the findings. Reprod Biomed Online 15(4):365–366PubMedCrossRefGoogle Scholar
  9. Cohen J et al (2009) The role of preimplantation genetic diagnosis in diagnosing embryo aneuploidy. Curr Opin Obstet Gynecol 21(5):442–449CrossRefGoogle Scholar
  10. Colls P et al (2009) Increased efficiency of preimplantation genetic diagnosis for aneuploidy by testing 12 chromosomes. Reprod Biomed Online 19(4):532–538PubMedCrossRefGoogle Scholar
  11. Coonen E et al (2000) Preimplantation genetic diagnosis of a reciprocal translocation t(3;11)(q27.3;q24.3) in siblings. Mol Hum Reprod 6(3):199–206PubMedCrossRefGoogle Scholar
  12. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301PubMedCrossRefGoogle Scholar
  13. Daphnis DD et al (2005) Detailed FISH analysis of day 5 human embryos reveals the mechanisms leading to mosaic aneuploidy. Hum Reprod 20(1):129–137PubMedCrossRefGoogle Scholar
  14. Daphnis DD et al (2008) Analysis of the evolution of chromosome abnormalities in human embryos from day 3 to 5 using CGH and FISH. Mol Hum Reprod 14(2):117–125PubMedCrossRefGoogle Scholar
  15. Debrock S et al (2010) Preimplantation genetic screening for aneuploidy of embryos after in vitro fertilization in women aged at least 35 years: a prospective randomized trial. Fertil Steril 93(2):364–373PubMedCrossRefGoogle Scholar
  16. Delhanty JD et al (1997) Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet 99(6):755–760PubMedCrossRefGoogle Scholar
  17. DeUgarte CM et al (2008) Accuracy of FISH analysis in predicting chromosomal status in patients undergoing preimplantation genetic diagnosis. Fertil Steril 90(4):1049–1054PubMedCrossRefGoogle Scholar
  18. Diblik J et al (2007) Chromosome topology in normal and aneuploid blastomeres from human embryos. Prenat Diagn 27(12):1091–1099PubMedCrossRefGoogle Scholar
  19. Donoso P et al (2007) Current value of preimplantation genetic aneuploidy screening in IVF. Hum Reprod Update 13(1):15–25PubMedCrossRefGoogle Scholar
  20. Dundr M, Misteli T (2011) Biogenesis of nuclear bodies. Cold Spring Harb Perspect Biol 2(12):a000711CrossRefGoogle Scholar
  21. Finch KA et al (2008) Nuclear organisation in totipotent human nuclei and its relationship to chromosomal abnormality. J Cell Sci 121(pt 5):655–663PubMedCrossRefGoogle Scholar
  22. Fishel S, Fishel S et al (2010) Live birth after polar body array comparative genomic hybridization prediction of embryo ploidy: the future of IVF? Fertil Steril 93(3):1006 e7–1006 e10CrossRefGoogle Scholar
  23. Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma (Berl) 114(4):212–229CrossRefGoogle Scholar
  24. Foster HA et al (2005) Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118(pt 9):1811–1820PubMedCrossRefGoogle Scholar
  25. Fragouli E et al (2010) Comprehensive chromosome screening of polar bodies and blastocysts from couples experiencing repeated implantation failure. Fertil Steril 94(3):875–887PubMedCrossRefGoogle Scholar
  26. Fragouli E et al (2011) Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod 26(2):480–490PubMedCrossRefGoogle Scholar
  27. Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature (Lond) 447(7143):413–417CrossRefGoogle Scholar
  28. Fritz MA (2008) Perspectives on the efficacy and indications for preimplantation genetic screening: where are we now? Hum Reprod 23(12):2617–2621PubMedCrossRefGoogle Scholar
  29. Gabriel AS et al (2011) An algorithm for determining the origin of trisomy and the positions of chiasmata from SNP genotype data. Chromosome Res 19(2):155–163PubMedCrossRefGoogle Scholar
  30. Garrisi JG et al (2009) Effect of infertility, maternal age, and number of previous miscarriages on the outcome of preimplantation genetic diagnosis for idiopathic recurrent pregnancy loss. Fertil Steril 92(1):288–295PubMedCrossRefGoogle Scholar
  31. Goossens V et al (2009) ESHRE PGD Consortium data collection IX: cycles from January to December 2006 with pregnancy follow-up to October 2007. Hum Reprod 24(8):1786–1810PubMedCrossRefGoogle Scholar
  32. Goossens V et al (2012) ESHRE PGD Consortium data collection XI: cycles from January to December 2008 with pregnancy follow-up to October 2009. Hum Reprod 27(7):1887–1911PubMedCrossRefGoogle Scholar
  33. Griffin DK (1994) Fluorescent in situ hybridization for the diagnosis of genetic disease at postnatal, prenatal, and preimplantation stages. Int Rev Cytol 153:1–40PubMedCrossRefGoogle Scholar
  34. Griffin DK (1996) The incidence, origin, and etiology of aneuploidy. Int Rev Cytol 167:263–296PubMedCrossRefGoogle Scholar
  35. Griffin DK et al (1991) Fluorescent in-situ hybridization to interphase nuclei of human preimplantation embryos with X and Y chromosome specific probes. Hum Reprod 6(1):101–105PubMedGoogle Scholar
  36. Griffin DK et al (1992) Dual fluorescent in situ hybridisation for simultaneous detection of X and Y chromosome-specific probes for the sexing of human preimplantation embryonic nuclei. Hum Genet 89(1):18–22PubMedCrossRefGoogle Scholar
  37. Griffin DK et al (1993) Diagnosis of sex in preimplantation embryos by fluorescent in situ hybridisation. BMJ 306(6889):1382PubMedCrossRefGoogle Scholar
  38. Handyside A, Thornhill A (2007) In vitro fertilisation with preimplantation genetic screening. N Engl J Med 357(17):1770PubMedGoogle Scholar
  39. Handyside AH et al (2010) Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J Med Genet 47(10):651–658PubMedCrossRefGoogle Scholar
  40. Hardarson T et al (2008) Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trial. Hum Reprod 23(12):2806–2812PubMedCrossRefGoogle Scholar
  41. Harper JC, Harton G (2010) The use of arrays in preimplantation genetic diagnosis and screening. Fertil Steril 94(4):1173–1177PubMedCrossRefGoogle Scholar
  42. Harper JC et al (1994) Identification of the sex of human preimplantation embryos in two hours using an improved spreading method and fluorescent in-situ hybridization (FISH) using directly labelled probes. Hum Reprod 9(4):721–724PubMedGoogle Scholar
  43. Harper J et al (2008) What next for preimplantation genetic screening? Hum Reprod 23(3):478–480PubMedCrossRefGoogle Scholar
  44. Harper J et al (2010) What next for preimplantation genetic screening (PGS)? A position statement from the ESHRE PGD Consortium steering committee. Hum Reprod 25(4):821–823PubMedCrossRefGoogle Scholar
  45. Hernandez ER (2009) What next for preimplantation genetic screening? Beyond aneuploidy. Hum Reprod 24(7):1538–1541PubMedCrossRefGoogle Scholar
  46. Ioannou D, Griffin DK (2011) Male fertility, chromosome abnormalities, and nuclear organization. Cytogenet Genome Res 133(2-4):269–279PubMedCrossRefGoogle Scholar
  47. Ioannou D et al (2011a) Multicolour interphase cytogenetics: 24 chromosome probes, 6 colours, 4 layers. Mol Cell Probes 25(5-6):199–205PubMedCrossRefGoogle Scholar
  48. Ioannou D et al (2011b) Nuclear organisation of sperm remains remarkably unaffected in the presence of defective spermatogenesis. Chromosome Res 19(6):741–753PubMedCrossRefGoogle Scholar
  49. Ioannou D et al (2012) Twenty-four chromosome FISH in human IVF embryos reveals patterns of post-zygotic chromosome segregation and nuclear organisation. Chromosome Res 20(4):447–460PubMedCrossRefGoogle Scholar
  50. Jansen RP et al (2008) What next for preimplantation genetic screening (PGS)? Experience with blastocyst biopsy and testing for aneuploidy. Hum Reprod 23(7):1476–1478PubMedCrossRefGoogle Scholar
  51. Khalil A et al (2007) Chromosome territories have a highly nonspherical morphology and nonrandom positioning. Chromosome Res 15(7):899–916PubMedCrossRefGoogle Scholar
  52. Lanctot C et al (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8(2):104–115PubMedCrossRefGoogle Scholar
  53. Le Caignec C et al (2006) Single-cell chromosomal imbalances detection by array CGH. Nucleic Acids Res 34(9):e68PubMedCrossRefGoogle Scholar
  54. Lim CK et al (2008) A healthy live birth after successful preimplantation genetic diagnosis for carriers of complex chromosome rearrangements. Fertil Steril 90(5):1680–1684PubMedCrossRefGoogle Scholar
  55. Manuelidis L (1985) Individual interphase chromosome domains revealed by in situ hybridization. Hum Genet 71(4):288–293PubMedCrossRefGoogle Scholar
  56. Manuelidis L (1990) A view of interphase chromosomes. Science 250(4987):1533–1540PubMedCrossRefGoogle Scholar
  57. Martin RH (2008) Meiotic errors in human oogenesis and spermatogenesis. Reprod Biomed Online 16(4):523–531PubMedCrossRefGoogle Scholar
  58. Mastenbroek S et al (2007) In vitro fertilization with preimplantation genetic screening. N Engl J Med 357(1):9–17PubMedCrossRefGoogle Scholar
  59. McKenzie LJ et al (2004) Nuclear chromosomal localization in human preimplantation embryos: correlation with aneuploidy and embryo morphology. Hum Reprod 19(10):2231–2237PubMedCrossRefGoogle Scholar
  60. Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature (Lond) 445(7126):379–781CrossRefGoogle Scholar
  61. Meaburn KJ, Parris CN, Bridger JM (2005) The manipulation of chromosomes by mankind: the uses of microcell-mediated chromosome transfer. Chromosoma (Berl) 114(4):263–274CrossRefGoogle Scholar
  62. Mersereau JE et al (2008) Preimplantation genetic screening to improve in vitro fertilization pregnancy rates: a prospective randomized controlled trial. Fertil Steril 90(4):1287–1289PubMedCrossRefGoogle Scholar
  63. Mewar R et al (1992) Confirmation of a cryptic unbalanced translocation using whole chromosome fluorescence in situ hybridization. Am J Med Genet 44(4):477–481PubMedCrossRefGoogle Scholar
  64. Miguel RB, Pombox A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:780–788Google Scholar
  65. Munne S (2003) Preimplantation genetic diagnosis and human implantation—a review. Placenta 24(suppl B):S70–S76PubMedCrossRefGoogle Scholar
  66. Munne S, Cohen J (1998) Chromosome abnormalities in human embryos. Hum Reprod Update 4(6):842–855PubMedCrossRefGoogle Scholar
  67. Munne S et al (1993) Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod 8(12):2185–2191PubMedGoogle Scholar
  68. Munne S et al (1994) Chromosome mosaicism in human embryos. Biol Reprod 51(3):373–379PubMedCrossRefGoogle Scholar
  69. Munne S, et al (1995) Assessment of numeric abnormalities of X, Y, 18, and 16 chromosomes in preimplantation human embryos before transfer. Am J Obstet Gynecol 172(4 pt 1):1191–1199; discussion 1199–1201Google Scholar
  70. Munne S et al (1998) Preimplantation genetic analysis of translocations: case-specific probes for interphase cell analysis. Hum Genet 102(6):663–674PubMedCrossRefGoogle Scholar
  71. Munne S et al (2000) Outcome of preimplantation genetic diagnosis of translocations. Fertil Steril 73(6):1209–1218PubMedCrossRefGoogle Scholar
  72. Munne S et al (2004) Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod Biomed Online 8(1):81–90PubMedCrossRefGoogle Scholar
  73. Munne S et al (2007a) Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos. Reprod Biomed Online 14(5):628–634PubMedCrossRefGoogle Scholar
  74. Munne S et al (2007b) Substandard application of preimplantation genetic screening may interfere with its clinical success. Fertil Steril 88(4):781–784PubMedCrossRefGoogle Scholar
  75. Munne S, Cohen J, Simpson JL (2007c) In vitro fertilization with preimplantation genetic screening. N Engl J Med 357(17):1769–1770PubMedCrossRefGoogle Scholar
  76. Northrop LE et al (2010) SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod 16(8):590–600PubMedCrossRefGoogle Scholar
  77. Obradors A et al (2008) Birth of a healthy boy after a double factor PGD in a couple carrying a genetic disease and at risk for aneuploidy: case report. Hum Reprod 23(8):1949–1956PubMedCrossRefGoogle Scholar
  78. Oliver B, Misteli T (2005) A non-random walk through the genome. Genome Biol 6(4):214PubMedCrossRefGoogle Scholar
  79. Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12(9):425–432PubMedCrossRefGoogle Scholar
  80. Pederson T (2004) The spatial organization of the genome in mammalian cells. Curr Opin Genet Dev 14(2):203–209PubMedCrossRefGoogle Scholar
  81. Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3(3):a000638PubMedCrossRefGoogle Scholar
  82. Rajapakse I, Groudine M (2011) On emerging nuclear order. J Cell Biol 192(5):711–721PubMedCrossRefGoogle Scholar
  83. Rouquette J et al (2010) Functional nuclear architecture studied by microscopy: present and future. Int Rev Cell Mol Biol 282:1–90PubMedCrossRefGoogle Scholar
  84. Schoenfelder S, Clay I, Fraser P (2010) The transcriptional interactome: gene expression in 3D. Curr Opin Genet Dev 20(2):127–133PubMedCrossRefGoogle Scholar
  85. Schoolcraft WB et al (2009) Preimplantation aneuploidy testing for infertile patients of advanced maternal age: a randomized prospective trial. Fertil Steril 92(1):157–162PubMedCrossRefGoogle Scholar
  86. Schoolcraft WB et al (2010) Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril 94(5):1700–1706PubMedCrossRefGoogle Scholar
  87. Scriven PN, Handyside AH, Ogilvie CM (1998) Chromosome translocations: segregation modes and strategies for preimplantation genetic diagnosis. Prenat Diagn 18(13):1437–1449PubMedCrossRefGoogle Scholar
  88. Sermondade N, Mandelbaum J (2009) [Mastenbroek controversy or how much ink is spilled on preimplantation genetic screening subject]. Gynecol Obstet Fertil 37(3):252–256PubMedCrossRefGoogle Scholar
  89. Simpson JL (2008) What next for preimplantation genetic screening? Randomized clinical trial in assessing PGS: necessary but not sufficient. Hum Reprod 23(10):2179–2181PubMedCrossRefGoogle Scholar
  90. Simpson JL (2010) Preimplantation genetic diagnosis at 20 years. Prenat Diagn 30(7):682–695PubMedCrossRefGoogle Scholar
  91. Simpson J, Tempest H (2010) Role of preimplantation genetic diagnosis (PGD) in current infertility practice. Int J Infertility Fetal Med 1(1):1–10Google Scholar
  92. Spector DL, Lamond AI (2011) Nuclear speckles. Cold Spring Harb Perspect Biol 3(2):a000646PubMedCrossRefGoogle Scholar
  93. Staessen C et al (2004) Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum Reprod 19(12):2849–2858PubMedCrossRefGoogle Scholar
  94. Staessen C et al (2008) Preimplantation genetic screening does not improve delivery rate in women under the age of 36 following single-embryo transfer. Hum Reprod 23(12):2818–2825PubMedCrossRefGoogle Scholar
  95. Tanabe H et al (2001) Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res 504:37–45Google Scholar
  96. Thornhill AR et al (2005) ESHRE PGD Consortium ‘Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)’. Hum Reprod 20(1):35–48PubMedCrossRefGoogle Scholar
  97. Treff NR et al (2010) SNP microarray-based 24 chromosome aneuploidy screening is significantly more consistent than FISH. Mol Hum Reprod 16(8):583–589PubMedCrossRefGoogle Scholar
  98. Treff NR et al (2011) Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses. Mol Hum Reprod 17(6):335–343PubMedCrossRefGoogle Scholar
  99. Twisk M et al (2008) No beneficial effect of preimplantation genetic screening in women of advanced maternal age with a high risk for embryonic aneuploidy. Hum Reprod 23(12):2813–2817PubMedCrossRefGoogle Scholar
  100. Uher P et al (2009) Non-informative results and monosomies in PGD: the importance of a third round of re-hybridization. Reprod Biomed Online 19(4):539–546PubMedCrossRefGoogle Scholar
  101. Voullaire L et al (2000) Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridization. Hum Genet 106(2):210–217PubMedCrossRefGoogle Scholar
  102. Wells D, Delhanty JD (2000) Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod 6(11):1055–1062PubMedCrossRefGoogle Scholar
  103. Werlin L et al (2003) Preimplantation genetic diagnosis as both a therapeutic and diagnostic tool in assisted reproductive technology. Fertil Steril 80(2):467–468PubMedCrossRefGoogle Scholar
  104. Wiland E et al (2008) Successful pregnancy after preimplantation genetic diagnosis for carrier of t(2;7)(p11.2;q22) with high rates of unbalanced sperm and embryos: a case report. Prenat Diagn 28(1):36–41PubMedCrossRefGoogle Scholar
  105. Wilton LJ (2007) In vitro fertilization with preimplantation genetic screening. N Engl J Med 357(17):1770; author reply 1770–1771Google Scholar
  106. Wilton L et al (2009) The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod 24(5):1221–1228PubMedCrossRefGoogle Scholar
  107. Zalensky A, Zalenskaya I (2007) Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem Soc Trans 35(pt 3):609–611PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.School of BiosciencesUniversity of KentCanterburyUK
  2. 2.Department of Human and Molecular GeneticsFlorida International UniversityMiamiUSA
  3. 3.The London Bridge Fertility, Gynaecology and Genetics CentreLondonUK

Personalised recommendations