Skip to main content

Molecular Pathology of Pancreatic Cancer Precursor Lesions

  • Chapter
  • First Online:
Molecular Genetics of Pancreatic Cancer

Abstract

Pancreatic cancer is the fourth leading cause of cancer-related death in the USA. Each year about 44,000 patients are newly diagnosed with pancreatic cancer in the USA. Most of these patients present with advanced disease and have a very poor prognosis.

Given this dismal prognosis, the challenge is to identify pancreatic cancer in an early stage or, better, patients at risk for pancreatic cancer before an incurable invasive carcinoma has developed. Several distinctive precursor lesions of pancreatic cancer are now known, which theoretically allows for detection of patients at risk of developing pancreatic cancer. These precursor lesions are the microscopic pancreatic intraepithelial neoplasia (PanIN) and the macroscopic cystic precursor lesions intraductal papillary mucinous neoplasia (IPMN), intraductal tubulopapillary neoplasm (ITPN), and mucinous cystic neoplasia/mucinous cystadenoma (MCN).

Insight in the molecular biology of pancreatic adenocarcinoma and these precursor lesions has substantially increased during the past decades. Accurate understanding of the successive molecular genetic alterations in these lesions may eventually lead to biomarkers that can predict biological behavior and guide treatment of patients at risk of invasive pancreatic cancer. This chapter reviews the clinical, diagnostic, and molecular genetic aspects of these pancreatic cancer precursor lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adsay NV, Merati K, Basturk O et al (2004) Pathologically and biologically distinct types of epithelium in intraductal papillary mucinous neoplasms: delineation of an “intestinal” pathway of carcinogenesis in the pancreas. Am J Surg Pathol 28(7):839–848

    PubMed  Google Scholar 

  • Adsay NV, Fukushima N, Furukawa H et al (2010) Intraductal neoplasms of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, Theise N (eds) WHO Classification of Tumours of the Digestive System World Health Organisation Classification of Tumors. IARC, Lyon, pp 304–313

    Google Scholar 

  • Andea A, Sarkar F, Adsay VN (2003) Clinicopathological correlates of pancreatic intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma. Mod Pathol 16(10):996–1006

    PubMed  Google Scholar 

  • Ban S, Naitoh Y, Mino-Kenudson M et al (2006) Intraductal papillary mucinous neoplasm (IPMN) of the pancreas: its histopathologic difference between 2 major types. Am J Surg Pathol 30(12):1561–1569

    PubMed  Google Scholar 

  • Basturk O, Khayyata S, Klimstra DS et al (2010) Preferential expression of MUC6 in oncocytic and pancreatobiliary types of intraductal papillary neoplasms highlights a pyloropancreatic pathway, distinct from the intestinal pathway, in pancreatic carcinogenesis. Am J Surg Pathol 34(3):364–370

    PubMed  Google Scholar 

  • Biankin AV, Biankin SA, Kench JG et al (2002) Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut 50(6):861–868

    PubMed  CAS  Google Scholar 

  • Bilimoria KY, Bentrem DJ, Ko CY et al (2007) Validation of the 6th edition AJCC Pancreatic Cancer Staging System: report from the National Cancer Database. Cancer 110(4):738–744

    PubMed  Google Scholar 

  • Brune K, Abe T, Canto M et al (2006) Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am J Surg Pathol 30(9):1067–1076

    PubMed  Google Scholar 

  • Canto MI, Hruban RH, Fishman EK et al (2012) Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 142(4):796–804

    PubMed  Google Scholar 

  • Chari ST, Yadav D, Smyrk TC et al (2002) Study of recurrence after surgical resection of intraductal papillary mucinous neoplasm of the pancreas. Gastroenterology 123(5):1500–1507

    PubMed  Google Scholar 

  • Crippa S, Salvia R, Warshaw AL et al (2008) Mucinous cystic neoplasm of the pancreas is not an aggressive entity: lessons from 163 resected patients. Ann Surg 247(4):571–579

    PubMed  Google Scholar 

  • Crippa S, Fernandez-Del Castillo C, Salvia R et al (2010) Mucin-producing neoplasms of the pancreas: an analysis of distinguishing clinical and epidemiologic characteristics. Clin Gastroenterol Hepatol 8(2):213–219

    PubMed  Google Scholar 

  • D’Angelica M, Brennan MF, Suriawinata AA et al (2004) Intraductal papillary mucinous neoplasms of the pancreas: an analysis of clinicopathologic features and outcome. Ann Surg 239(3):400–408

    PubMed  Google Scholar 

  • Day JD, Digiuseppe JA, Yeo C et al (1996) Immunohistochemical evaluation of HER-2/neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasms. Hum Pathol 27(2):119–124

    PubMed  CAS  Google Scholar 

  • de Wilde RF, Hruban RH, Maitra A et al (2012) Reporting precursors to invasive pancreatic cancer: pancreatic intraepithelial neoplasia, intraductal neoplasms and mucinous cystic neoplasm. Diagn Histopathol 18(1):17–30

    Google Scholar 

  • Detlefsen S, Sipos B, Feyerabend B et al (2005) Pancreatic fibrosis associated with age and ductal papillary hyperplasia. Virchows Arch 447(5):800–805

    PubMed  Google Scholar 

  • Erdogan D, Lamers WH, Offerhaus GJ et al (2006) Cystadenomas with ovarian stroma in liver and pancreas: an evolving concept. Dig Surg 23(3):186–191

    PubMed  CAS  Google Scholar 

  • Fritz S, Fernandez-del Castillo C, Mino-Kenudson M et al (2009) Global genomic analysis of intraductal papillary mucinous neoplasms of the pancreas reveals significant molecular differences compared to ductal adenocarcinoma. Ann Surg 249(3):440–447

    PubMed  Google Scholar 

  • Fukushima N, Fukayama M (2007) Mucinous cystic neoplasms of the pancreas: pathology and molecular genetics. J Hepatobiliary Pancreat Surg 14(3):238–242

    PubMed  Google Scholar 

  • Fukushima N, Mukai K (1997) “Ovarian-type” stroma of pancreatic mucinous cystic tumor expresses smooth muscle phenotype. Pathol Int 47(11):806–808

    PubMed  CAS  Google Scholar 

  • Fukushima N, Mukai K, Kanai Y et al (1997) Intraductal papillary tumors and mucinous cystic tumors of the pancreas: clinicopathologic study of 38 cases. Hum Pathol 28(9):1010–1017

    PubMed  CAS  Google Scholar 

  • Fukushima N, Sato N, Prasad N et al (2004) Characterization of gene expression in mucinous cystic neoplasms of the pancreas using oligonucleotide microarrays. Oncogene 23(56): 9042–9051

    PubMed  CAS  Google Scholar 

  • Furukawa T, Kloppel G, Volkan Adsay N et al (2005) Classification of types of intraductal papillary-­mucinous neoplasm of the pancreas: a consensus study. Virchows Arch 447(5):794–799

    PubMed  Google Scholar 

  • Furukawa T, Hatori T, Fujita I et al (2011) Prognostic relevance of morphological types of intraductal papillary mucinous neoplasms of the pancreas. Gut 60(4):509–516

    PubMed  Google Scholar 

  • Goggins M, Hruban RH, Kern SE (2000) BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am J Pathol 156(5):1767–1771

    PubMed  CAS  Google Scholar 

  • Habbe N, Koorstra JB, Mendell JT et al (2009) MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther 8(4):340–346

    PubMed  CAS  Google Scholar 

  • Hashimoto Y, Murakami Y, Uemura K et al (2008) Telomere shortening and telomerase expression during multistage carcinogenesis of intraductal papillary mucinous neoplasms of the pancreas. J Gastrointest Surg 12(1):17–28, discussion 28-9

    PubMed  Google Scholar 

  • Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362(17):1605–1617

    PubMed  CAS  Google Scholar 

  • Hong SM, Kelly D, Griffith M et al (2008) Multiple genes are hypermethylated in intraductal papillary mucinous neoplasms of the pancreas. Mod Pathol 21(12):1499–1507

    PubMed  CAS  Google Scholar 

  • Hong SM, Omura N, Vincent A et al (2012) Genome-wide CpG island profiling of intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 18(3):700–712

    PubMed  CAS  Google Scholar 

  • Hruban RH, Goggins M, Parsons J et al (2000) Progression model for pancreatic cancer. Clin Cancer Res 6(8):2969–2972

    PubMed  CAS  Google Scholar 

  • Hruban RH, Takaori K, Klimstra DS et al (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28(8):977–987

    PubMed  Google Scholar 

  • Hruban RH, Pitman MB, Klimstra DS (2007a) Intraductal neoplasms. In: Hruban RH, Pitman MB, Klimstra DS (eds) Tumors of the pancreas: AFIP atlas of tumor pathology. AFIP atlas of tumor pathology, vol 6. American Registry of Pathology in collaboration with Armed Forces Institute of Pathology, Washington, DC, pp 75–110

    Google Scholar 

  • Hruban RH, Takaori K, Canto M et al (2007b) Clinical importance of precursor lesions in the pancreas. J Hepatobiliary Pancreat Surg 14(3):255–263

    PubMed  Google Scholar 

  • Hruban RH, Maitra A, Goggins M (2008) Update on pancreatic intraepithelial neoplasia. Int J Clin Exp Pathol 1(4):306–316

    PubMed  CAS  Google Scholar 

  • Hruban RH, Boffetta P, Hiraoka N et al (2010) Ductal adenocarcinoma of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, Theise ND (eds) WHO Classification of tumors of the digestive system World Health Organisation Classification of Tumors. IARC, Lyon, pp 281–291

    Google Scholar 

  • Iacobuzio-Donahue CA, Klimstra DS, Adsay NV et al (2000a) Dpc-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: comparison with conventional ductal adenocarcinomas. Am J Pathol 157(3):755–761

    PubMed  CAS  Google Scholar 

  • Iacobuzio-Donahue CA, Wilentz RE, Argani P et al (2000b) Dpc4 protein in mucinous cystic neoplasms of the pancreas: frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am J Surg Pathol 24(11):1544–1548

    PubMed  CAS  Google Scholar 

  • Jimenez RE, Warshaw AL, Z’Graggen K et al (1999) Sequential accumulation of K-ras mutations and p53 overexpression in the progression of pancreatic mucinous cystic neoplasms to malignancy. Ann Surg 230(4):501–509, discussion 509-11

    PubMed  CAS  Google Scholar 

  • Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806

    PubMed  CAS  Google Scholar 

  • Jury RP, Thibodeau BJ, Fortier LE et al (2012) Gene expression changes associated with the ­progression of intraductal papillary mucinous neoplasms. Pancreas 41(4):611–618

    PubMed  CAS  Google Scholar 

  • Kanda M, Matthaei H, Wu J et al (2012) Presence of somatic mutations in most early-stage ­pancreatic intraepithelial neoplasia. Gastroenterology 142(4):730–733

    PubMed  CAS  Google Scholar 

  • Kawahira H, Kobayashi S, Kaneko K et al (2000) p53 protein expression in intraductal papillary mucinous tumors (IPMT) of the pancreas as an indicator of tumor malignancy. Hepatogastroenterology 47(34):973–977

    PubMed  CAS  Google Scholar 

  • Kawamoto S, Lawler LP, Horton KM et al (2006) MDCT of intraductal papillary mucinous ­neoplasm of the pancreas: evaluation of features predictive of invasive carcinoma. AJR Am J Roentgenol 186(3):687–695

    PubMed  Google Scholar 

  • Kim GE, Bae HI, Park HU et al (2002) Aberrant expression of MUC5AC and MUC6 gastric mucins and sialyl Tn antigen in intraepithelial neoplasms of the pancreas. Gastroenterology 123(4):1052–1060

    PubMed  CAS  Google Scholar 

  • Kim SG, Wu TT, Lee JH et al (2003) Comparison of epigenetic and genetic alterations in mucinous cystic neoplasm and serous microcystic adenoma of pancreas. Mod Pathol 16(11):1086–1094

    PubMed  Google Scholar 

  • Kosmahl M, Pauser U, Peters K et al (2004) Cystic neoplasms of the pancreas and tumor-like lesions with cystic features: a review of 418 cases and a classification proposal. Virchows Arch 445(2):168–178

    PubMed  CAS  Google Scholar 

  • Kozuka S, Sassa R, Taki T et al (1979) Relation of pancreatic duct hyperplasia to carcinoma. Cancer 43(4):1418–1428

    PubMed  CAS  Google Scholar 

  • Laffan TA, Horton KM, Klein AP et al (2008) Prevalence of unsuspected pancreatic cysts on MDCT. AJR Am J Roentgenol 191(3):802–807

    PubMed  Google Scholar 

  • Liszka L, Pajak J, Zielinska-Pajak E et al (2010) Intraductal oncocytic papillary neoplasms of the pancreas and bile ducts: a description of five new cases and review based on a systematic survey of the literature. J Hepatobiliary Pancreat Sci 17(3):246–261

    PubMed  Google Scholar 

  • Lohr M, Kloppel G, Maisonneuve P et al (2005) Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia 7(1):17–23

    PubMed  Google Scholar 

  • Luttges J, Galehdari H, Brocker V et al (2001) Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am J Pathol 158(5):1677–1683

    PubMed  CAS  Google Scholar 

  • Luttges J, Feyerabend B, Buchelt T et al (2002) The mucin profile of noninvasive and invasive mucinous cystic neoplasms of the pancreas. Am J Surg Pathol 26(4):466–471

    PubMed  CAS  Google Scholar 

  • Maire F, Hammel P, Terris B et al (2002) Prognosis of malignant intraductal papillary mucinous tumours of the pancreas after surgical resection. Comparison with pancreatic ductal adenocarcinoma. Gut 51(5):717–722

    PubMed  CAS  Google Scholar 

  • Maisonneuve P, Lowenfels AB (2010) Epidemiology of pancreatic cancer: an update. Dig Dis 28(4–5):645–656

    PubMed  Google Scholar 

  • Maitra A, Adsay NV, Argani P et al (2003) Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 16(9):902–912

    PubMed  Google Scholar 

  • Maitra A, Fukushima N, Takaori K et al (2005) Precursors to invasive pancreatic cancer. Adv Anat Pathol 12(2):81–91

    PubMed  Google Scholar 

  • Meckler KA, Brentnall TA, Haggitt RC et al (2001) Familial fibrocystic pancreatic atrophy with endocrine cell hyperplasia and pancreatic carcinoma. Am J Surg Pathol 25(8):1047–1053

    PubMed  CAS  Google Scholar 

  • Mino-Kenudson M, Fernandez-Del Castillo C, Baba Y et al (2011) Prognosis of invasive intraductal papillary mucinous neoplasm depends on histological and precursor epithelial subtypes. Gut 60(12):1712–1720

    PubMed  Google Scholar 

  • Miyamoto Y, Maitra A, Ghosh B et al (2003) Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3(6):565–576

    PubMed  CAS  Google Scholar 

  • Mohri D, Asaoka Y, Ijichi H et al (2012) Different subtypes of intraductal papillary mucinous neoplasm in the pancreas have distinct pathways to pancreatic cancer progression. J Gastroenterol 47(2):203–213

    PubMed  CAS  Google Scholar 

  • Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal ­precursors of human pancreatic adenocarcinoma. Cancer Res 57(11):2140–2143

    PubMed  CAS  Google Scholar 

  • Nara S, Shimada K, Kosuge T et al (2008) Minimally invasive intraductal papillary-mucinous carcinoma of the pancreas: clinicopathologic study of 104 intraductal papillary-mucinous neoplasms. Am J Surg Pathol 32(2):243–255

    PubMed  Google Scholar 

  • Ohuchida K, Mizumoto K, Fujita H et al (2006) Sonic hedgehog is an early developmental marker of intraductal papillary mucinous neoplasms: clinical implications of mRNA levels in pancreatic juice. J Pathol 210(1):42–48

    PubMed  CAS  Google Scholar 

  • Patel SA, Adams R, Goldstein M et al (2002) Genetic analysis of invasive carcinoma arising in intraductal oncocytic papillary neoplasm of the pancreas. Am J Surg Pathol 26(8):1071–1077

    PubMed  Google Scholar 

  • Poultsides GA, Reddy S, Cameron JL et al (2010) Histopathologic basis for the favorable survival after resection of intraductal papillary mucinous neoplasm-associated invasive adenocarcinoma of the pancreas. Ann Surg 251(3):470–476

    PubMed  Google Scholar 

  • Raimondo M, Tachibana I, Urrutia R et al (2002) Invasive cancer and survival of intraductal papillary mucinous tumors of the pancreas. Am J Gastroenterol 97(10):2553–2558

    PubMed  Google Scholar 

  • Ridder GJ, Maschek H, Flemming P et al (1998) Ovarian-like stroma in an invasive mucinous cystadenocarcinoma of the pancreas positive for inhibin. A hint concerning its possible histogenesis. Virchows Arch 432(5):451–454

    PubMed  CAS  Google Scholar 

  • Rodriguez JR, Salvia R, Crippa S et al (2007) Branch-duct intraductal papillary mucinous ­neoplasms: observations in 145 patients who underwent resection. Gastroenterology 133(1): 72–79, quiz 309-10

    PubMed  Google Scholar 

  • Salvia R, Fernandez-del Castillo C, Bassi C et al (2004) Main-duct intraductal papillary mucinous neoplasms of the pancreas: clinical predictors of malignancy and long-term survival following resection. Ann Surg 239(5):678–685, discussion 685-7

    PubMed  Google Scholar 

  • Sarr MG, Kendrick ML, Nagorney DM et al (2001) Cystic neoplasms of the pancreas: benign to malignant epithelial neoplasms. Surg Clin North Am 81(3):497–509

    PubMed  CAS  Google Scholar 

  • Sasaki S, Yamamoto H, Kaneto H et al (2003) Differential roles of alterations of p53, p16, and SMAD4 expression in the progression of intraductal papillary-mucinous tumors of the pancreas. Oncol Rep 10(1):21–25

    PubMed  CAS  Google Scholar 

  • Sato N, Rosty C, Jansen M et al (2001) STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 159(6):2017–2022

    PubMed  CAS  Google Scholar 

  • Sato N, Ueki T, Fukushima N et al (2002) Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology 123(1):365–372

    PubMed  CAS  Google Scholar 

  • Sato N, Fukushima N, Maitra A et al (2004) Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol 164(3):903–914

    PubMed  CAS  Google Scholar 

  • Sato N, Fukushima N, Hruban RH et al (2008) CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol 21(3):238–244

    PubMed  CAS  Google Scholar 

  • Satoh K, Shimosegawa T, Moriizumi S et al (1996) K-ras mutation and p53 protein accumulation in intraductal mucin-hypersecreting neoplasms of the pancreas. Pancreas 12(4):362–368

    PubMed  CAS  Google Scholar 

  • Satoh K, Hamada S, Kanno A et al (2010) Expression of MSX2 predicts malignancy of branch duct intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol 45(7):763–770

    PubMed  CAS  Google Scholar 

  • Schonleben F, Qiu W, Bruckman KC et al (2007) BRAF and KRAS gene mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/IPMC) of the pancreas. Cancer Lett 249(2):242–248

    PubMed  Google Scholar 

  • Schonleben F, Allendorf JD, Qiu W et al (2008a) Mutational analyses of multiple oncogenic pathways in intraductal papillary mucinous neoplasms of the pancreas. Pancreas 36(2):168–172

    PubMed  CAS  Google Scholar 

  • Schonleben F, Qiu W, Remotti HE et al (2008b) PIK3CA, KRAS, and BRAF mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/C) of the pancreas. Langenbecks Arch Surg 393(3):289–296

    PubMed  Google Scholar 

  • Schutte M, Hruban RH, Geradts J et al (1997) Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 57(15):3126–3130

    PubMed  CAS  Google Scholar 

  • Sessa F, Solcia E, Capella C et al (1994) Intraductal papillary-mucinous tumours represent a distinct group of pancreatic neoplasms: an investigation of tumour cell differentiation and K-ras, p53 and c-erbB-2 abnormalities in 26 patients. Virchows Arch 425(4):357–367

    PubMed  CAS  Google Scholar 

  • Shi C, Hruban RH (2012) Intraductal papillary mucinous neoplasm. Hum Pathol 43(1):1–16

    PubMed  Google Scholar 

  • Shi C, Klein AP, Goggins M et al (2009) Increased prevalence of precursor lesions in familial pancreatic cancer patients. Clin Cancer Res 15(24):7737–7743

    PubMed  CAS  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29

    PubMed  Google Scholar 

  • Su GH, Hruban RH, Bansal RK et al (1999) Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Am J Pathol 154(6):1835–1840

    PubMed  CAS  Google Scholar 

  • Suda K, Hirai S, Matsumoto Y et al (1996) Variant of intraductal carcinoma (with scant mucin production) is of main pancreatic duct origin: a clinicopathological study of four patients. Am J Gastroenterol 91(4):798–800

    PubMed  CAS  Google Scholar 

  • Tajiri T, Tate G, Inagaki T et al (2005) Intraductal tubular neoplasms of the pancreas: histogenesis and differentiation. Pancreas 30(2):115–121

    PubMed  Google Scholar 

  • Tanaka M, Chari S, Adsay V et al (2006) International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology 6(1–2):17–32

    PubMed  Google Scholar 

  • Terris B, Ponsot P, Paye F et al (2000) Intraductal papillary mucinous tumors of the pancreas confined to secondary ducts show less aggressive pathologic features as compared with those involving the main pancreatic duct. Am J Surg Pathol 24(10):1372–1377

    PubMed  CAS  Google Scholar 

  • Thayer SP, di Magliano MP, Heiser PW et al (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425(6960):851–856

    PubMed  CAS  Google Scholar 

  • Thompson LD, Becker RC, Przygodzki RM et al (1999) Mucinous cystic neoplasm (mucinous cystadenocarcinoma of low-grade malignant potential) of the pancreas: a clinicopathologic study of 130 cases. Am J Surg Pathol 23(1):1–16

    PubMed  CAS  Google Scholar 

  • Tsutsumi K, Sato N, Cui L et al (2011) Expression of claudin-4 (CLDN4) mRNA in intraductal papillary mucinous neoplasms of the pancreas. Mod Pathol 24(4):533–541

    PubMed  CAS  Google Scholar 

  • van Heek NT, Meeker AK, Kern SE et al (2002) Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol 161(5):1541–1547

    PubMed  Google Scholar 

  • Vincent A, Herman J, Schulick R et al (2011) Pancreatic cancer. Lancet 378(9791):607–620

    PubMed  Google Scholar 

  • Wilentz RE, Geradts J, Maynard R et al (1998) Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res 58(20): 4740–4744

    PubMed  CAS  Google Scholar 

  • Wilentz RE, Albores-Saavedra J, Zahurak M et al (1999) Pathologic examination accurately predicts prognosis in mucinous cystic neoplasms of the pancreas. Am J Surg Pathol 23(11):1320–1327

    PubMed  CAS  Google Scholar 

  • Wilentz RE, Iacobuzio-Donahue CA, Argani P et al (2000) Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 60(7):2002–2006

    PubMed  CAS  Google Scholar 

  • Wouters K, Ectors N, Van Steenbergen W et al (1998) A pancreatic mucinous cystadenoma in a man with mesenchymal stroma, expressing oestrogen and progesterone receptors. Virchows Arch 432(2):187–189

    PubMed  CAS  Google Scholar 

  • Wu J, Jiao Y, Dal Molin M et al (2011a) Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci USA 108(52):21188–21193

    PubMed  CAS  Google Scholar 

  • Wu J, Matthaei H, Maitra A et al (2011b) Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med 3(92):92ra66

    PubMed  CAS  Google Scholar 

  • Xiao HD, Yamaguchi H, Dias-Santagata D et al (2011) Molecular characteristics and biological behaviours of the oncocytic and pancreatobiliary subtypes of intraductal papillary mucinous neoplasms. J Pathol 224(4):508–516

    PubMed  CAS  Google Scholar 

  • Yamaguchi H, Shimizu M, Ban S et al (2009) Intraductal tubulopapillary neoplasms of the pancreas distinct from pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 33(8):1164–1172

    PubMed  Google Scholar 

  • Yamaguchi H, Kuboki Y, Hatori T et al (2011) Somatic Mutations in PIK3CA and Activation of AKT in Intraductal Tubulopapillary Neoplasms of the Pancreas. Am J Surg Pathol 35(12): 1812–1817

    PubMed  Google Scholar 

  • Yamao K, Yanagisawa A, Takahashi K et al (2011) Clinicopathological features and prognosis of mucinous cystic neoplasm with ovarian-type stroma: a multi-institutional study of the Japan pancreas society. Pancreas 40(1):67–71

    PubMed  CAS  Google Scholar 

  • Yu J, Li A, Hong SM et al (2012) MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin cancer res 18(4):981–992

    PubMed  Google Scholar 

  • Zamboni G, Scarpa A, Bogina G et al (1999) Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. Am J Surg Pathol 23(4):410–422

    PubMed  CAS  Google Scholar 

  • Zamboni G, Fukushima N, Hruban RH et al (2010) Mucinous cystic neoplasms of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, Theise ND (eds) WHO Classification of tumors of the digestive system World Health Organisation Classification of Tumors. IARC, Lyon, pp 300–303

    Google Scholar 

Download references

Acknowledgments

We thank Folkert Morsink for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lodewijk A. A. Brosens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brosens, L.A.A., Offerhaus, G.J. (2013). Molecular Pathology of Pancreatic Cancer Precursor Lesions. In: Simeone, D., Maitra, A. (eds) Molecular Genetics of Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6549-2_2

Download citation

Publish with us

Policies and ethics