Skip to main content

Pressure Measurement Sensor for Jointed Structures

  • Conference paper
  • First Online:
Special Topics in Structural Dynamics, Volume 6

Abstract

The talk will deal with measurements of normal loads in assembled structures. A new sensor has been developed to measure the distribution of the normal force in a bolted joint. This sensor is piezoelectric and is associated to an electronic device for carrying out a static measurement. Moreover, the electrode of the sensor is shaped in order to make possible the measurement of a detailed normal stress field. Furthermore, preliminary results of the study of the vibrations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodman LE, Klumpp JH (1956) Analysis of slip damping with reference to turbine blade vibration. Journal of Applied Mechanics, Am Soc Mech Eng Appl Mech Div 23, pp. 421

    MATH  Google Scholar 

  2. Metherell A, Diller S (1968) Instantaneous energy dissipation rate in a lap joint-uniform clamping pressure. Am Soc Mech Eng J Appl Mech 35:123–128

    Article  Google Scholar 

  3. Earles SWE (1966) Theoretical estimation of the frictional energy dissipation in a simple lap joint. J Mech Eng Sci 8:207–214

    Article  Google Scholar 

  4. Esteban J, Rogers CA (2000) On the damping effect due to bolted junctions in space structures subjected to pyro-shock. Comput Struct 75:347–359

    Article  Google Scholar 

  5. Dion J-L, Chevallier G, Peyret N (2012) Improvement of measurement techniques for damping induced by micro sliding. Mech Syst Signal Process. 34(1–2):106–115. http://dx.doi.org/0000 doi:0000.

  6. Peyret N, Dion J-L, Chevallier G, Argoul P (2010) Micro-slip induced damping in planar contact under constant and uniform normal stress. Int J Appl Mech 02:281. http://dx.doi.org/10.1142/S1758825110000597 doi:10.1142/S1758825110000597.

    Google Scholar 

  7. Festjens H, Chevallier G, Dion J-L (2012) A numerical quasi-static method for the identification of frictional dissipation in bolted joints. In: ASME IDETC, Chicago

    Google Scholar 

  8. Chen W, Deng X (2005) Structural damping caused by micro-slip along frictional interfaces. Int J Mech Sci 47:1191–1211

    Article  MATH  Google Scholar 

  9. Caignot A, Ladeveze P, Neron D, Gallo VL, Romeuf T (2007) Prediction by virtual testing of damping in the spatial structures. In: Proc Colloque national en calcul de structures

    Google Scholar 

  10. Foltete E, Heller L (2005) Identification experimentale de l’amortissement modal non-linaire dans des poutres boulonnees. In: Premier congres conception et modelisation des systemes mecaniques

    Google Scholar 

  11. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=26560176-1987 – IEEE standard on piezoelectricity, Tech. rep. (1988). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=26560

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chevallier .

Editor information

Editors and Affiliations

Appendix: Piezoelectric Materials

Appendix: Piezoelectric Materials

This section summarizes the datas provided by PI and the datas that are used for finite element simulation.

41.1.1 Manufacturer Datas

The manufacturers provide incomplete and inhomogeneous datas. The following summarizes the datas given by PI :

  • Densityρ = 7, 800 kg/m3

  • Strain piezoelectric constants\(\begin{array}{ccc} d_{31} = -180 \cdot { 10}^{-12}\;\text{C/N}&d_{33} = 400 \cdot { 10}^{-12}\;\text{C/N}&d_{15} = 550 \cdot { 10}^{-12}\;\text{C/N}\\ \end{array}\)

  • Dielectric constants\(\begin{array}{ccc} \in _{33}^{T}\text{=1750}\in _{0}& \in _{11}^{T}\text{=1650}\in _{0}&\in _{0}\text{=8}.854 \cdot 1{0}^{12}\\ \end{array} \;\text{F/m}\)

  • Elastic compliance at constant electric field\(\begin{array}{cc} S_{11}^{E} = 16.1 \cdot { 10}^{-12}\;{\text{m}}^{2}\text{/N}&S_{33}^{E} = 20.7 \cdot { 10}^{-12}\;{\text{m}}^{2}\text{/N}\\ \end{array}\)

  • Material coupling factor (IEEE definition, see [11])\(\begin{array}{*{20}{c}} k_{31} = 0.35&k_{33} = 0.69 \\ k_{15} = 0.66& k_{p} = 0.62\end{array}\)

41.1.2 ABAQUS Datas

Parameters are given for an assumed p thickness polarized piezoceramic material in the coordinate frame R 0.

  • Densityρ = 7, 800 kg/m3

  • Strain piezoelectric constants \(d = \left [\begin{array}{cccccc} 0 & 0 & 0 &0&d_{15} & 0 \\ 0 & 0 & 0 &0& 0 &d_{15} \\ d_{31} & d_{31} & d_{33} & 0& 0 & 0\\ \end{array} \right ]\) where all the parameters are given by PI

  • Elastic compliance at constant electric field \({S}^{E} = \left [\begin{array}{cc} \begin{array}{ccc} S_{11}^{E}&S_{12}^{E}&S_{12}^{E} \\ S_{12}^{E}&S_{11}^{E}&S_{13}^{E} \\ S_{12}^{E}&S_{13}^{E}&S_{33}^{E}\\ \end{array} & 0 \\ 0 &\begin{array}{ccc} S_{55}^{E}& & \\ &S_{55}^{E}& \\ & &S_{66}^{E}\\ \end{array}\\ \end{array} \right ]\) with \(\begin{array}{*{35}{l}} S_{55}^{E} = \frac{d_{15}^{2}} {\in _{11}^{T}k_{15}^{2}} \\ S_{12}^{E} = -S_{11}^{E} + 2 \frac{d_{31}^{2}} {\in _{33}^{T}k_{p}^{2}} \\ S_{13}^{E} = -\nu _{13}^{E}S_{11}^{E} \\ S_{66}^{E} = 2\left (S_{11}^{E} - S_{12}^{E}\right )\\ \end{array}\)

  • Engineering constants at constant electric field \(E_{i} = 1/S_{pp}^{E}\) for i = { 1, 2, 3} and p = { 1, 2, 3}\(G_{ij} = 1/S_{pp}^{E}\) for i = { 2, 1, 1},j = { 3, 3, 2} and p = { 4, 5, 6}

  • Dielectric constants \(e = d{\left ({S}^{E}\right )}^{-1}\) and \({\in }^{S} ={ \in }^{T} - d{e}^{t}\) \(\begin{array}{cc} \in _{11}^{S}\text{=0}.8245 \cdot { 10}^{-9}\;\text{m/F}& \in _{33}^{S}\text{=0}.7122 \cdot { 10}^{-9}\;\text{m/F}\\ \end{array}\)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Chevallier, G., Festjens, H., Renaud, F., Dion, JL. (2013). Pressure Measurement Sensor for Jointed Structures. In: Allemang, R., De Clerck, J., Niezrecki, C., Wicks, A. (eds) Special Topics in Structural Dynamics, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6546-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6546-1_41

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6545-4

  • Online ISBN: 978-1-4614-6546-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics