Overview of MHC Class I Antigens

  • Natalia Aptsiauri
  • Angel Miguel Garcia-Lora
  • Teresa Cabrera
Chapter
Part of the SpringerBriefs in Cancer Research book series (BRIEFSCANCER, volume 6)

Abstract

Cancer development is the result of an accumulation of genetic alterations. Activation or inactivation of certain genes (proto-oncogenes and tumor suppressor genes) is required for cell transformation. As a result of these genetic alterations, tumor cells produce new or modified proteins that are processed by the cell, generating small peptides that enter the route of Major Histocompatibility Complex (MHC) class I for presentation to T cells. Cytotoxic and helper T lymphocytes recognize antigenic peptides processed and presented by MHC class I and II molecules, respectively. Therefore, T cells have the ability to monitor any genetic alteration, including those associated with malignant transformation.

Keywords

Recombination Polypeptide Cytosol 

References

  1. Ahmad M, Rees RC, Ali SA (2004) Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 53:844–854PubMedCrossRefGoogle Scholar
  2. Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695(1–3):189–207PubMedCrossRefGoogle Scholar
  3. Aoe T, Okamoto Y, Saito T (1995) Activated macrophages induce structural abnormalities of the T-cell receptor-CD3 complex. J Exp Med 181(5):1881–1886PubMedCrossRefGoogle Scholar
  4. Aptsiauri N, Cabrera T, Garcia-Lora A, Lopez-Nevot MA, Ruiz-Cabello F, Garrido F (2007) MHC class I antigens and immune surveillance in transformed cells. Int Rev Cytol 256:139–189PubMedCrossRefGoogle Scholar
  5. Aruga A, Aruga E, Tanigawa K, Bishop DK, Sondak VK, Chang AE (1997) Type 1 versus type 2 cytokine release by V beta T cell subpopulations determines in vivo anti-tumor reactivity—IL-10 mediates a suppressive role. J Immunol 159(2):664–673PubMedGoogle Scholar
  6. Berset M, Cerottini JP, Guggisberg D, Romero P, Burri F, Rimoldi D, Panizzon RG (2001) Expression of Melan-A/MART-1 antigen as a prognostic factor in primary cutaneous melanoma. Int J Cancer 95(1):73–77PubMedCrossRefGoogle Scholar
  7. Burnet M (1957) Cancer—a biological approach.1. The processes of control. Br Med J 1(5022):779–786PubMedCrossRefGoogle Scholar
  8. Carosella ED, Moreau P, Le Maoult J, Le Discorde M, Dausset J, Rouas-Freiss N (2003) HLA-G molecules: from maternal-fetal tolerance to tissue acceptance. Adv Immunol 81:199–252PubMedCrossRefGoogle Scholar
  9. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernández-Luna JL, Nuñez G, Dalton WS, Jove R (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10(1):105–115PubMedCrossRefGoogle Scholar
  10. Chicz RM, Urban RG, Lane WS, Gorga JC, Stern LJ, Vignali DAA, Strominger JL (1992) Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358:764–768PubMedCrossRefGoogle Scholar
  11. Cresswel P, Turner MJ, Jl S (1973) Papain-solubilized HL-A antigens from cultured human lymphocytes contain 2 peptide fragments—(histocompatibility-glycoproteins-membrane-­molecular weight). Proc Natl Acad Sci U S A 70:1603–1607CrossRefGoogle Scholar
  12. De la Salle H, Hanau D, Fricker D, Urlacher A, Kelly A, Salamero J, Powis SH, Donato L, Bausinger H, Laforet M, Jeras M, Spehner D, Bieber T, Falkenrodt A, Cazenave JP, Trowsdale J, Tongio MM (1994) Homozygous human TAP peptide transporter mutation in HLA class-I deficiency. Science 265:237–241PubMedCrossRefGoogle Scholar
  13. Del Val M, Iborra S, Ramos M, Lazaro S (2011) Generation of MHC class I ligands in the secretory and vesicular pathways. Cell Mol Life Sci 68:1543–1552PubMedCrossRefGoogle Scholar
  14. Derre L, Corvaisier M, Charreau B, Moreau A, Godefroy E, Moreau-Aubry A, Jotereau F, Gervois N (2006) Expression and release of HLA-E by melanoma cells and melanocytes: Potential impact on the response of cytotoxic effector cells. J Immunol 177(5):3100–3107PubMedGoogle Scholar
  15. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800PubMedGoogle Scholar
  16. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998PubMedCrossRefGoogle Scholar
  17. Dunn GP, Sheehan KCF, Old LJ, Schreiber RD (2005) IFN unresponsiveness in LNCaP cells due to the lack of JAK1 gene expression. Cancer Res 65(8):3447–3453PubMedGoogle Scholar
  18. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296PubMedCrossRefGoogle Scholar
  19. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–4166PubMedGoogle Scholar
  20. Garbi N, Tan P, Diehl AD, Chambers BJ, Ljunggren HG, Momburg F, Hammerling GJ (2000) Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat Immunol 1:234–238PubMedCrossRefGoogle Scholar
  21. Garrido F, Algarra I, García-Lora AM (2010) The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible “hard” lesions. Cancer Immunol Immunother 59(10):1601–1606PubMedCrossRefGoogle Scholar
  22. Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, LopezBotet M, Duggan-Keen M, Stern PL (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18:89–95PubMedCrossRefGoogle Scholar
  23. Geraghty DE (1993) Structure of the HLA class-I region and expression of its resident genes. Curr Opin Immunol 5:3–7PubMedCrossRefGoogle Scholar
  24. Goodfellow PN, Jones EA, Vanheyningen V, Solomon E, Bobrow M, Miggiano V, Bodmer WF (1975) Beta-2-microglobulin gene is on chromosome-15 and not in HL-A region. Nature 254:267–269PubMedCrossRefGoogle Scholar
  25. Grandea AG, Golovina TN, Hamilton SE, Sriram V, Spies T, Brutkiewicz RR, Harty JT, Eisenlohr LC, Van Kaer L (2000) Impaired assembly yet normal trafficking of MHC class I molecules in tapasin mutant mice. Immunity 13:213–222PubMedCrossRefGoogle Scholar
  26. Grandea AG, Van Kaer L (2001) Tapasin: an ER chaperone that controls MHC class I assembly with peptide. Trends Immunol 22:194–199PubMedCrossRefGoogle Scholar
  27. Groh V, WuJ YC, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738PubMedCrossRefGoogle Scholar
  28. Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, Cho HI, Celis E, Lennox B, Knight SC, Padhya T, McCaffrey TV, McCaffrey JC, Antonia S, Fishman M, Ferris RL, Kagan VE, Gabrilovich DI (2010) Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16(8):880–886PubMedCrossRefGoogle Scholar
  29. Hinz S, Trauzold A, Boenicke L, Sandberg C, Beckmann S, Bayer E, Walczak H, Kalthoff H, Ungefroren H (2000) Bcl-X-L protects pancreatic adenocarcinoma cells against CD95-and TRAIL-receptor-mediated apoptosis. Oncogene 19(48):5477–5486PubMedCrossRefGoogle Scholar
  30. Jager E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth A (1996) Inverse relation-ship of melanocyte differentiation antigen expression in melanoma tissues and CD8(+) cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 66(4):470–476PubMedCrossRefGoogle Scholar
  31. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95(13):7556–7561PubMedCrossRefGoogle Scholar
  32. Kataoka T, Schroter M, Hahne M, Schneider P, Irmler M, Thome M, Froelich CJ, Tschopp J (1998) FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J Immunol 161(8):3936–3942PubMedGoogle Scholar
  33. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3(11):999–1005PubMedCrossRefGoogle Scholar
  34. Khong HT, Wang QJ, Rosenberg SA (2004) Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother 27(3):184–190PubMedCrossRefGoogle Scholar
  35. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274PubMedCrossRefGoogle Scholar
  36. Lehner PJ, Surman MJ, Cresswell P (1998) Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line.220. Immunity 8:221–231PubMedCrossRefGoogle Scholar
  37. Lehner PJ, Trowsdale J (1998) Antigen presentation: coming out gracefully. Curr Biol 8(17):R605–R608PubMedCrossRefGoogle Scholar
  38. Ljunggren HG, Karre K (1990) In search of the missing self—MHC molecules and NK cell recognition. Immunol Today 11(7):237–244PubMedCrossRefGoogle Scholar
  39. Long EO (2002) Tumor cell recognition by natural killer cells. Semin Cancer Biol 12(1):57–61PubMedCrossRefGoogle Scholar
  40. Long EO, Wagtmann N (1997) Natural killer cell receptors. Curr Opin Immunol 9(3):344–350PubMedCrossRefGoogle Scholar
  41. Lorente E, Garcia R, Lopez D (2011) Allele-dependent processing pathways generate the endogenous human leukocyte antigen (HLA) class I peptide repertoire in transporters associated with antigen processing (TAP)-deficient Cells. J Biol Chem 286:38054–38059PubMedCrossRefGoogle Scholar
  42. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273PubMedCrossRefGoogle Scholar
  43. Meissner M, Reichert TE, Kunkel M, Gooding W, Whiteside TL, Ferrone S, Seliger B (2005) Defects in the human leukocyte antigen class I antigen-processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res 11(7):2552–2560PubMedCrossRefGoogle Scholar
  44. Merzougui N, Kratzer R, Saveanu L, van Endert P (2011) A proteasome-dependent, TAP-­independent pathway for cross-presentation of phagocytosed antigen. EMBO Rep 12:1257–1264PubMedCrossRefGoogle Scholar
  45. Monaco JJ (1992) A molecular-model of MHC class-I-restricted antigen processing. Immunol Today 13:173–178PubMedCrossRefGoogle Scholar
  46. Orr MT, Lanier LL (2010) Natural killer cell education and tolerance. Cell 142:847–856PubMedCrossRefGoogle Scholar
  47. Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187PubMedCrossRefGoogle Scholar
  48. Ploegh HL (1998) Viral strategies of immune evasion. Science 280(5361):248–253PubMedCrossRefGoogle Scholar
  49. Respa A, Bukur J, Ferrone S, Pawelec G, Zhao Y, Wang E, Marincola FM, Seliger B (2011) Association of IFN-gamma signal transduction defects with impaired HLA class I antigen processing in melanoma cell lines. Clin Cancer Res 17(9):2668–2678PubMedCrossRefGoogle Scholar
  50. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA (1996) Loss of functional beta(2)-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 88(2):100–108PubMedCrossRefGoogle Scholar
  51. Rivoltini L, Canese P, Huber V, Iero M, Pilla L, Valenti R, Fais S, Lozupone F, Casati C, Castelli C, Parmiani G (2005) Escape strategies and reasons for failure in the interaction between tumour cells and the immune system: how can we tilt the balance towards immune-mediated cancer control? Expert Opin Biol Ther 5(4):463–476PubMedCrossRefGoogle Scholar
  52. Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SGE (2011) The IMGT/HLA database. Nucleic Acids Res 39(Database issue):D1171–D1176PubMedCrossRefGoogle Scholar
  53. Rodriguez T, Mendez R, Del Campo A, Jimenez P, Aptsiauri N, Garrido F, Ruiz-Cabello F (2007) Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer 7:34PubMedCrossRefGoogle Scholar
  54. Rotzschke O, Falk K, Deres K, Schild H, Norda M, Metzger J, Jung G, Rammensee HG (1990) Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T-cells. Nature 348:252–254PubMedCrossRefGoogle Scholar
  55. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182:18–32PubMedCrossRefGoogle Scholar
  56. Seliger B, Ritz U, Abele R, Bock M, Tampe R, Sutter G, Drexler I, Huber C, Ferrone S (2001) Immune escape of melanoma: first evidence of structural alterations in two distinct components of the MHC class I antigen processing pathway. Cancer Res 61(24):8647–8650PubMedGoogle Scholar
  57. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570PubMedCrossRefGoogle Scholar
  58. Schultze JL, Nadler LM (2003) Lack of sufficient B7 expression as a tumor escape mechanism: implications for immunotherapy. In: Ochoa AC (ed) Mechanisms of tumor escape from the immune response. Taylor & Francis, London, pp 66–93Google Scholar
  59. Shepherd JC, Schumacher TNM, Ashtonrickardt PG, Imaeda S, Ploegh HL, Janeway CA, Tonegawa S (1993) TAP1-dependent peptide translocation in-vitro is ATP-dependent and peptide selective. Cell 74(3):577–584PubMedCrossRefGoogle Scholar
  60. Shin EC, Ahn JM, Kim CH, Choi Y, Ahn YS, Kim H, Kim SJ, Park JH (2001) IFN-gamma induces cell death in human hepatoma cells through a trail/death receptor-mediated apoptotic pathway. Int J Cancer 93(2):262–268PubMedCrossRefGoogle Scholar
  61. Stern LJ, Wiley DC (1994) Antigenic peptide binding by class-I and class-II histocompatibility proteins. Structure 2:245–251PubMedCrossRefGoogle Scholar
  62. Stern-Ginossar N, Gur C, Biton M, Horwitz E, Elboim M, Stanietsky N, Mandelboim M, Mandelboim O (2008) Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9:1065–1073PubMedCrossRefGoogle Scholar
  63. Sun JC, Lanier LL (2011) NK cell development, homeostasis and function: parallels with CD8(+) T cells. Nat Rev Immunol 11(10):645–657PubMedCrossRefGoogle Scholar
  64. Takahashi H, Feuerhake F, Kutok JL, Monti S, Dal Cin P, Neuberg D, Aster JC, Shipp MA (2006) FAS death domain deletions and cellular FADD-like interleukin 1 beta converting enzyme inhibitory protein (long) overexpression: alternative mechanisms for deregulating the extrinsic apoptotic pathway in diffuse large B-cell lymphoma subtypes. Clin Cancer Res 12(11 Pt 1):3265–3271PubMedCrossRefGoogle Scholar
  65. Terabe M, Berzofsky JA (2004) Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 16(2):157–162PubMedCrossRefGoogle Scholar
  66. Townsend A, Bodmer H (1989) Antigen recognition by class-I restricted lymphocyte-T. Annu Rev Immunol 7:601–624PubMedCrossRefGoogle Scholar
  67. Townsend A, Elliott T, Cerundolo V, Foster L, Barber B, Tse A (1990) Assembly of MHC class-I molecules analyzed in vitro. Cell 62:285–295PubMedCrossRefGoogle Scholar
  68. Trinchieri G (1989) Biology of natural-killer cells. Adv Immunol 47:187–376PubMedCrossRefGoogle Scholar
  69. Tripathi P, Agrawal S (2006) Non-classical HLA-G antigen and its role in the cancer progression. Cancer Invest 24(2):178–186PubMedCrossRefGoogle Scholar
  70. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274PubMedCrossRefGoogle Scholar
  71. Van Kaer L, Ashtonrickardt PG, Ploegh HL, Tonegawa S (1992) TAP1 mutant mice are deficient in antigen presentation, surface class-I molecules, and CD4-8+ T-cells. Cell 71:1205–1214PubMedCrossRefGoogle Scholar
  72. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271PubMedCrossRefGoogle Scholar
  73. Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D, Negro A, Sanvito F, Ponzoni M, Valentinis B, Bregni M, Prinetti A, Steffensen KR, Sonnino S, Gustafsson JA, Doglioni C, Bordignon C, Traversari C, Russo V (2010) Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med 16(1):98–105PubMedCrossRefGoogle Scholar
  74. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49PubMedCrossRefGoogle Scholar
  75. Wang M, Ellison CA, Gartner JG, HayGlass KT (1998) Natural killer cell depletion fails to influence initial CD4 T cell commitment in vivo in exogenous antigen-stimulated cytokine and antibody responses. J Immunol 160(3):1098–1105PubMedGoogle Scholar
  76. Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 13(18 Pt 1):5262–5270PubMedCrossRefGoogle Scholar
  77. Zou W, Chen S, Liu X, Yue P, Sporn MB, Khuri FR, Sun SY (2007) c-FLIP downregulation contributes to apoptosis induction by the novel synthetic triterpenoid methyl-2-cyano-3,12-­dioxooleana-1,9-dien-28-oate (CDDO-Me) in human lung cancer cells. Cancer Biol Ther 6(10):1614–1620PubMedCrossRefGoogle Scholar

Copyright information

© Maria Teresa Cabrera Castillo 2013

Authors and Affiliations

  • Natalia Aptsiauri
    • 1
  • Angel Miguel Garcia-Lora
    • 1
  • Teresa Cabrera
    • 2
  1. 1.Servicio de Análisis ClínicosHosp. Universitario Virgen de las NievesGranadaSpain
  2. 2.Departamento de Bioquímica y Biología Molecular III e InmunologíaUniversidad de GranadaGranadaSpain

Personalised recommendations