Skip to main content

Cancer Stem Cells Provide New Insights into the Therapeutic Responses of Human Prostate Cancer

  • Chapter
  • First Online:
Stem Cells and Prostate Cancer

Abstract

Whilst there has been a dramatic improvement in the survival of men with prostate cancer in the last few decades, we find ourselves at a crossroads, where another significant therapeutic advance is required. Current treatments for prostate cancer including hormone therapy, radiotherapy and chemotherapy all have their place, but result in almost inevitable treatment failure. In this chapter, we describe the role of cancer stem cells in tumour relapse as well as the potential they provide to develop novel treatment strategies. We examine the clinical implications of cancer stem cells as a therapy-resistant pool within prostate tumours and propose three strategies to target both cancer stem cells and bulk tumour cells, namely, combination therapy, differentiation therapy and targeted therapy. This chapter summarises the challenge of designing future therapies taking into account both the heterogeneity of prostate cancers and the resistant cancer stem cells at their core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal BB, Sung B (2011) NF-kappaB in cancer: a matter of life and death. Cancer Discov 1:469–471

    CAS  PubMed  Google Scholar 

  • Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    CAS  PubMed  Google Scholar 

  • Altieri DC (2012) Targeting survivin in cancer. Canc Lett. http://dx.doi.org/10.1016/j.conlet.2012.03.005

  • An J, Chervin AS, Nie A, Ducoff HS, Huang Z (2007) Overcoming the radioresistance of prostate cancer cells with a novel Bcl-2 inhibitor. Oncogene 26:652–661

    CAS  PubMed  Google Scholar 

  • Azevedo A, Cunha V, Teixeira AL, Medeiros R (2011) IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol 2:384–396

    PubMed  Google Scholar 

  • Badros AZ (2010) The role of maintenance therapy in the treatment of multiple myeloma. J Natl Compr Canc Netw 8(Suppl 1):S21–27

    CAS  PubMed  Google Scholar 

  • Bastus NC, Boyd LK, Mao X, Stankiewicz E, Kudahetti SC et al (2010) Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res 70:9544–9548

    PubMed  Google Scholar 

  • Birnie R, Bryce SD, Roome C, Dussupt V, Droop A et al (2008) Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 9:R83

    PubMed  Google Scholar 

  • Blackwood JK, Williamson SC, Greaves LC, Wilson L, Rigas AC et al (2011) In situ lineage tracking of human prostatic epithelial stem cell fate reveals a common clonal origin for basal and luminal cells. J Pathol 225:181–188

    CAS  PubMed  Google Scholar 

  • Bluemn EG, Nelson PS (2012) The androgen/androgen receptor axis in prostate cancer. Curr Opin Oncol 24:251–257

    CAS  PubMed  Google Scholar 

  • Bonkhoff H (2012) Factors implicated in radiation therapy failure and radiosensitization of prostate cancer. Prostate Canc 2012: 593241

    Google Scholar 

  • Bragado P, Sosa MS, Keely P, Condeelis J, Aguirre-Ghiso JA (2012) Microenvironments dictating tumor cell dormancy. Recent Results Cancer Res (Fortschritte der Krebsforschung Progres dans les recherches sur le cancer) 195:25–39

    Google Scholar 

  • Brawer MK (2002) Radiation therapy failure in prostate cancer patients: risk factors and methods of detection. Rev Urol 4(Suppl 2):S2–S11

    PubMed  Google Scholar 

  • Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q et al (2011) Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19:664–678

    CAS  PubMed  Google Scholar 

  • Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M (2012) Cancer stem cells as a predictive factor in radiotherapy. Semin Radiat Oncol 22:151–174

    PubMed  Google Scholar 

  • Buczacki S, Davies RJ, Winton DJ (2011) Stem cells, quiescence and rectal carcinoma: an unexplored relationship and potential therapeutic target. Br J Cancer 105:1253–1259

    CAS  PubMed  Google Scholar 

  • Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM et al (2010) Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst 102:1637–1652

    CAS  PubMed  Google Scholar 

  • Chen Y, Li D, Wang D, Liu X, Yin N et al (2012) Quiescence and attenuated DNA damage response promote survival of esophageal cancer stem cells. J Cell Biochem 113(12): 3643–3652

    CAS  PubMed  Google Scholar 

  • Cheng L, Bostwick DG, Li G, Wang Q, Hu N et al (1999) Allelic imbalance in the clonal evolution of prostate carcinoma. Cancer 85:2017–2022

    CAS  PubMed  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    CAS  PubMed  Google Scholar 

  • Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H et al (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA 109:2784–2789

    CAS  PubMed  Google Scholar 

  • Cook JA, Gius D, Wink DA, Krishna MC, Russo A et al (2004) Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol 14:259–266

    PubMed  Google Scholar 

  • Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106:13820–13825

    CAS  PubMed  Google Scholar 

  • Cruz FD, Matushansky I (2012) Solid tumor differentiation therapy - is it possible? Oncotarget 3:559–567

    PubMed  Google Scholar 

  • Dai Y, Bae K, Siemann DW (2011) Impact of hypoxia on the metastatic potential of human prostate cancer cells. Int J Radiat Oncol Biol Phys 81:521–528

    PubMed  Google Scholar 

  • De Marzo AM, Meeker AK, Epstein JI, Coffey DS (1998) Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol 153:911–919

    PubMed  Google Scholar 

  • De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H et al (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7:256–269

    PubMed  Google Scholar 

  • Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    CAS  PubMed  Google Scholar 

  • Dehm SM, Tindall DJ (2011) Alternatively spliced androgen receptor variants. Endocr Relat Cancer 18:R183–196

    CAS  PubMed  Google Scholar 

  • Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68:5469–5477

    CAS  PubMed  Google Scholar 

  • Di Stefano AB, Iovino F, Lombardo Y, Eterno V, Hoger T et al (2010) Survivin is regulated by interleukin-4 in colon cancer stem cells. J Cell Physiol 225:555–561

    PubMed  Google Scholar 

  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    CAS  PubMed  Google Scholar 

  • Ding XW, Wu JH, Jiang CP (2010) ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 86:631–637

    CAS  PubMed  Google Scholar 

  • Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–510

    CAS  PubMed  Google Scholar 

  • Djavan B, Susani M, Bursa B, Basharkhah A, Simak R et al (1999) Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen. Tech Urol 5:139–142

    CAS  PubMed  Google Scholar 

  • Drachenberg DE (2000) Treatment of prostate cancer: watchful waiting, radical prostatectomy, and cryoablation. Semin Surg Oncol 18:37–44

    CAS  PubMed  Google Scholar 

  • Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J et al (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 3:e2428

    PubMed  Google Scholar 

  • Eastham JA, Stapleton AM, Gousse AE, Timme TL, Yang G et al (1995) Association of p53 mutations with metastatic prostate cancer. Clin Cancer Res 1:1111–1118

    CAS  PubMed  Google Scholar 

  • Elliott A, Adams J, Al-Hajj M (2010) The ABCs of cancer stem cell drug resistance. IDrugs 13:632–635

    CAS  PubMed  Google Scholar 

  • Etzioni R, Gulati R, Tsodikov A, Wever EM, Penson DF et al (2012) The prostate cancer conundrum revisited: treatment changes and prostate cancer mortality declines. Cancer 118(23):5955–5963

    PubMed  Google Scholar 

  • Frame FM, Hager S, Pellacani D, Stower MJ, Walker HF et al (2010) Development and limitations of lentivirus vectors as tools for tracking differentiation in prostate epithelial cells. Exp Cell Res 316:3161–3171

    CAS  PubMed  Google Scholar 

  • Fulda S, Pervaiz S (2010) Apoptosis signaling in cancer stem cells. Int J Biochem Cell Biol 42:31–38

    CAS  PubMed  Google Scholar 

  • Germann M, Wetterwald A, Guzman-Ramirez N, van der Pluijm G, Culig Z et al (2012) Stem-like cells with luminal progenitor phenotype survive castration in human prostate cancer. Stem Cells 30:1076–1086

    CAS  PubMed  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    CAS  PubMed  Google Scholar 

  • Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010a) Identification of a cell of origin for human prostate cancer. Science 329:568–571

    CAS  PubMed  Google Scholar 

  • Goldstein AS, Stoyanova T, Witte ON (2010b) Primitive origins of prostate cancer: in vivo evidence for prostate-regenerating cells and prostate cancer-initiating cells. Mol Oncol 4:385–396

    PubMed  Google Scholar 

  • Haapala K, Kuukasjarvi T, Hyytinen E, Rantala I, Helin HJ et al (2007) Androgen receptor ­amplification is associated with increased cell proliferation in prostate cancer. Hum Pathol 38:474–478

    CAS  PubMed  Google Scholar 

  • Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R et al (2010) Androgen-induced TOP2B-­mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42:668–675

    CAS  PubMed  Google Scholar 

  • Hay CW, McEwan IJ (2012) The impact of point mutations in the human androgen receptor: classification of mutations on the basis of transcriptional activity. PLoS One 7:e32514

    CAS  PubMed  Google Scholar 

  • Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308

    CAS  PubMed  Google Scholar 

  • Hoey T, Yen WC, Axelrod F, Basi J, Donigian L et al (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5:168–177

    CAS  PubMed  Google Scholar 

  • Hudson DL, Guy AT, Fry P, O'Hare MJ, Watt FM et al (2001) Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J Histochem Cytochem 49:271–278

    CAS  PubMed  Google Scholar 

  • Isaacs JT, Coffey DS (1981) Adaptation versus selection as the mechanism responsible for the relapse of prostatic cancer to androgen ablation therapy as studied in the Dunning R-3327-H adenocarcinoma. Cancer Res 41:5070–5075

    CAS  PubMed  Google Scholar 

  • Isaacs JT, Coffey DS (1989) Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 2:33–50

    Google Scholar 

  • Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J et al (2010) Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7:279–282

    CAS  PubMed  Google Scholar 

  • Ishkanian AS, Zafarana G, Thoms J, Bristow RG (2010) Array CGH as a potential predictor of radiocurability in intermediate risk prostate cancer. Acta Oncologica 49:888–894

    CAS  PubMed  Google Scholar 

  • Jewett A, Tseng HC (2012) Potential rescue, survival and differentiation of cancer stem cells and primary non-transformed stem cells by monocyte-induced split anergy in natural killer cells. Cancer Immunol Immunother 61:265–274

    CAS  PubMed  Google Scholar 

  • Jewett A, Tseng HC, Arasteh A, Saadat S, Christensen RE et al (2012) Natural killer cells preferentially target cancer stem cells; role of monocytes in protection against NK cell mediated lysis of cancer stem cells. Curr Drug Deliv 9:5–16

    CAS  PubMed  Google Scholar 

  • Jones JS (2011) Radiorecurrent prostate cancer: an emerging and largely mismanaged epidemic. Eur Urol 60(3):411–412

    PubMed  Google Scholar 

  • Kallioniemi OP, Visakorpi T (1996) Genetic basis and clonal evolution of human prostate cancer. Adv Cancer Res 68:225–255

    CAS  PubMed  Google Scholar 

  • Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D et al (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431:707–712

    CAS  PubMed  Google Scholar 

  • Kelly K, Yin JJ (2008) Prostate cancer and metastasis initiating stem cells. Cell Res 18:528–537

    CAS  PubMed  Google Scholar 

  • Kirby M, Hirst C, Crawford ED (2011) Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract 65:1180–1192

    CAS  PubMed  Google Scholar 

  • Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E et al (1997) Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57:314–319

    CAS  PubMed  Google Scholar 

  • Koutras AK, Starakis I, Lymperatou D, Kalofonos HP (2012) Angiogenesis as a therapeutic target in breast cancer. Mini Rev Med Chem 12(12):1230–1238

    CAS  PubMed  Google Scholar 

  • Kubota Y (2012) Tumor angiogenesis and anti-angiogenic therapy. Keio J Med 61:47–56

    CAS  PubMed  Google Scholar 

  • Kumar A, White TA, MacKenzie AP, Clegg N, Lee C et al (2011) Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc Natl Acad Sci USA 108:17087–17092

    CAS  PubMed  Google Scholar 

  • Kusumbe AP, Bapat SA (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69:9245–9253

    CAS  PubMed  Google Scholar 

  • Kyprianou N, Isaacs JT (1988) Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 122:552–562

    CAS  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    CAS  PubMed  Google Scholar 

  • Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J et al (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci USA 107:2610–2615

    CAS  PubMed  Google Scholar 

  • Lee SO, Lou W, Hou M, Onate SA, Gao AC (2003) Interleukin-4 enhances prostate-specific ­antigen expression by activation of the androgen receptor and Akt pathway. Oncogene 22:7981–7988

    PubMed  Google Scholar 

  • Lee SO, Pinder E, Chun JY, Lou W, Sun M et al (2008) Interleukin-4 stimulates androgen-­independent growth in LNCaP human prostate cancer cells. Prostate 68:85–91

    CAS  PubMed  Google Scholar 

  • Lee SO, Chun JY, Nadiminty N, Lou W, Feng S et al (2009) Interleukin-4 activates androgen receptor through CBP/p300. Prostate 69:126–132

    CAS  PubMed  Google Scholar 

  • Li R, Evaul K, Sharma KK, Chang KH, Yoshimoto J et al (2012a) Abiraterone inhibits 3beta-­hydroxysteroid dehydrogenase: a rationale for increasing drug exposure in castration-resistant prostate cancer. Clin Cancer Res 18:3571–3579

    CAS  PubMed  Google Scholar 

  • Li L, Li B, Shao J, Wang X (2012b) Chemotherapy sorting can be used to identify cancer stem cell populations. Mol Biol Rep 39(11):9955–9963

    CAS  PubMed  Google Scholar 

  • Limas C, Frizelle SP (1994) Proliferative activity in benign and neoplastic prostatic epithelium. J Pathol 174:201–208

    CAS  PubMed  Google Scholar 

  • Liu G, Yuan X, Zeng Z, Tunici P, Ng H et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    PubMed  Google Scholar 

  • Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC et al (2008) Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 68:6407–6415

    CAS  PubMed  Google Scholar 

  • Ma I, Allan AL (2011) The Role of Human Aldehyde Dehydrogenase in Normal and Cancer Stem Cells. Stem Cell Rev 7(2):292–306

    CAS  PubMed  Google Scholar 

  • Ma Y, Liang D, Liu J, Axcrona K, Kvalheim G et al (2011) Prostate cancer cell lines under hypoxia exhibit greater stem-like properties. PLoS One 6:e29170

    CAS  PubMed  Google Scholar 

  • Maiolino A, Hungria VT, Garnica M, Oliveira-Duarte G, Oliveira LC et al (2012) Thalidomide plus dexamethasone as a maintenance therapy after autologous hematopoietic stem cell transplantation improves progression-free survival in multiple myeloma. Am J Hematol 87(10):948–952

    CAS  PubMed  Google Scholar 

  • Maitland NJ, Collins A (2005) A tumour stem cell hypothesis for the origins of prostate cancer. BJU Int 96:1219–1223

    CAS  PubMed  Google Scholar 

  • Maitland NJ, Collins AT (2008) Inflammation as the primary aetiological agent of human prostate cancer: a stem cell connection? J Cell Biochem 105:931–939

    CAS  PubMed  Google Scholar 

  • Maitland NJ, Collins AT (2010) Cancer stem cells— a therapeutic target? Curr Opin Mol Ther 12:662–673

    CAS  PubMed  Google Scholar 

  • Maitland NJ, Frame FM, Polson ES, Lewis LJ, Collins AC (2011) Prostate cancer stem cells: do they have a basal or luminal phenotype? Horm Cancer 2(1):47–61

    PubMed  Google Scholar 

  • Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK et al (2009) Induced chromosomal proximity and gene fusions in prostate cancer. Science 326:1230

    CAS  PubMed  Google Scholar 

  • Marcu M, Radu E, Sajin M (2010) Neuroendocrine transdifferentiation of prostate carcinoma cells and its prognostic significance. Rom J Morphol Embryol 51:7–12

    PubMed  Google Scholar 

  • Marin-Aguilera M, Codony-Servat J, Kalko SG, Fernandez PL, Bermudo R et al (2012) Identification of docetaxel resistance genes in castration-resistant prostate cancer. Mol Cancer Ther 11:329–339

    CAS  PubMed  Google Scholar 

  • Marques RB, Erkens-Schulze S, de Ridder CM, Hermans KG, Waltering K et al (2005) Androgen receptor modifications in prostate cancer cells upon long-termandrogen ablation and antiandrogen treatment. Int J Cancer 117:221–229

    CAS  PubMed  Google Scholar 

  • Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334

    CAS  PubMed  Google Scholar 

  • Matei DV, Renne G, Pimentel M, Sandri MT, Zorzino L et al (2012) Neuroendocrine differentiation in castration-resistant prostate cancer: a systematic diagnostic attempt. Clin Genitourin Cancer 10(3):164–173

    PubMed  Google Scholar 

  • Mezynski J, Pezaro C, Bianchini D, Zivi A, Sandhu S et al (2012) Antitumour activity of docetaxel following treatment with the CYP17A1 inhibitor abiraterone: clinical evidence for cross-­resistance? Ann Oncol 23(11):2943–2947

    CAS  PubMed  Google Scholar 

  • Miki J, Rhim JS (2008) Prostate cell cultures as in vitro models for the study of normal stem cells and cancer stem cells. Prostate Cancer Prostatic Dis 11:32–39

    CAS  PubMed  Google Scholar 

  • Milosevic M, Warde P, Menard C, Chung P, Toi A et al (2012) Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin Cancer Res 18:2108–2114

    CAS  PubMed  Google Scholar 

  • Mirchandani D, Zheng J, Miller GJ, Ghosh AK, Shibata DK et al (1995) Heterogeneity in intratumor distribution of p53 mutations in human prostate cancer. Am J Pathol 147:92–101

    CAS  PubMed  Google Scholar 

  • Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF et al (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68:4447–4454

    CAS  PubMed  Google Scholar 

  • Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol, 11 pages. doi: 10.1155/2011/396076

    Google Scholar 

  • Moore N, Houghton J, Lyle S (2012) Slow-cycling therapy-resistant cancer cells. Stem Cells Dev 21:1822–1830

    CAS  PubMed  Google Scholar 

  • Munoz J, Stange DE, Schepers AG, van de Wetering M, Koo BK et al (2012) The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ' + 4' cell markers. EMBO J 31(14):3079–3091

    CAS  PubMed  Google Scholar 

  • Navone NM, Labate ME, Troncoso P, Pisters LL, Conti CJ et al (1999) p53 mutations in prostate cancer bone metastases suggest that selected p53 mutants in the primary site define foci with metastatic potential. J Urol 161:304–308

    CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44 + alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67:6796–6805

    CAS  PubMed  Google Scholar 

  • Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140:62–73

    CAS  PubMed  Google Scholar 

  • Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-­initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    PubMed  Google Scholar 

  • Piekarz RL, Bates SE (2009) Epigenetic modifiers: basic understanding and clinical development. Clin Cancer Res 15:3918–3926

    CAS  PubMed  Google Scholar 

  • Pietra G, Manzini C, Vitale M, Balsamo M, Ognio E et al (2009) Natural killer cells kill human melanoma cells with characteristics of cancer stem cells. Int Immunol 21:793–801

    CAS  PubMed  Google Scholar 

  • Pili R, Salumbides B, Zhao M, Altiok S, Qian D et al (2012) Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br J Cancer 106:77–84

    CAS  PubMed  Google Scholar 

  • Qi Y, Li RM, Kong FM, Li H, Yu JP et al (2012) How do tumor stem cells actively escape from host immunosurveillance? Biochem Biophys Res Commun 420:699–703

    CAS  PubMed  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM et al (2008) Efficient tumour ­formation by single human melanoma cells. Nature 456:593–598

    CAS  PubMed  Google Scholar 

  • Rane J, Pellacani D, Maitland NJ (2012) Advanced prostate cancer: a case for adjuvant differentiation therapy. Nat Rev Urol 9:595–602

    CAS  PubMed  Google Scholar 

  • Rehman Y, Rosenberg JE (2012) Abiraterone acetate: oral androgen biosynthesis inhibitor for treatment of castration-resistant prostate cancer. Drug Des Devel Ther 6:13–18

    CAS  PubMed  Google Scholar 

  • Reichert S, Rodel C, Mirsch J, Harter PN, Tomicic MT et al (2011) Survivin inhibition and DNA double-strand break repair: a molecular mechanism to overcome radioresistance in glioblastoma. Radiother Oncol 101:51–58

    CAS  PubMed  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    CAS  PubMed  Google Scholar 

  • Risbridger GP, Taylor RA (2008) Minireview: regulation of prostatic stem cells by stromal niche in health and disease. Endocrinology 149:4303–4306

    CAS  PubMed  Google Scholar 

  • Ruiz C, Lenkiewicz E, Evers L, Holley T, Robeson A et al (2011) Advancing a clinically relevant perspective of the clonal nature of cancer. Proc Natl Acad Sci USA 108:12054–12059

    CAS  PubMed  Google Scholar 

  • Salm SN, Burger PE, Coetzee S, Goto K, Moscatelli D et al (2005) TGF-{beta} maintains dormancy of prostatic stem cells in the proximal region of ducts. J Cell Biol 170:81–90

    CAS  PubMed  Google Scholar 

  • Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM et al (2004) Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA 101:12561–12566

    CAS  PubMed  Google Scholar 

  • Schroder F, Crawford ED, Axcrona K, Payne H, Keane TE (2012) Androgen deprivation therapy: past, present and future. BJU Int 109(Suppl 6):1–12

    CAS  PubMed  Google Scholar 

  • Scotto KW (2003) Transcriptional regulation of ABC drug transporters. Oncogene 22:7496–7511

    CAS  PubMed  Google Scholar 

  • Sebastian de Bono J, Sandhu S, Attard G (2011) Beyond hormone therapy for prostate cancer with PARP inhibitors. Cancer Cell 19:573–574

    CAS  PubMed  Google Scholar 

  • Seiwert TY, Salama JK, Vokes EE (2007) The concurrent chemoradiation paradigm–general principles. Nat Clin Pract Oncol 4:86–100

    CAS  PubMed  Google Scholar 

  • Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51:1–28

    PubMed  Google Scholar 

  • Seruga B, Ocana A, Tannock IF (2011) Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol 8:12–23

    CAS  PubMed  Google Scholar 

  • Sharifi N, Kawasaki BT, Hurt EM, Farrar WL (2006) Stem cells in prostate cancer: resolving the castrate-resistant conundrum and implications for hormonal therapy. Cancer Biol Ther 5:901–906

    CAS  PubMed  Google Scholar 

  • Shi M, Guo XT, Shu MG, Chen FL, Li LW (2007) Cell-permeable hypoxia-inducible factor-1 (HIF-1) antagonists function as tumor radiosensitizers. Med Hypotheses 69:33–35

    CAS  PubMed  Google Scholar 

  • Siegel R, Desantis C, Virgo K, Stein K, Mariotto A et al (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62(4):220–241

    PubMed  Google Scholar 

  • Skvortsova I, Skvortsov S, Stasyk T, Raju U, Popper BA et al (2008) Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics 8:4521–4533

    CAS  PubMed  Google Scholar 

  • Snippert HJ, Clevers H (2011) Tracking adult stem cells. EMBO Rep 12:113–122

    CAS  PubMed  Google Scholar 

  • Sottocornola R, Lo Celso C (2012) Dormancy in the stem cell niche. Stem Cell Res Ther 3:10

    CAS  PubMed  Google Scholar 

  • Stark GR, Wahl GM (1984) Gene amplification. Annu Rev Biochem 53:447–491

    CAS  PubMed  Google Scholar 

  • Swift SL, Burns JE, Maitland NJ (2010) Altered expression of neurotensin receptors is associated with the differentiation state of prostate cancer. Cancer Res 70:347–356

    CAS  PubMed  Google Scholar 

  • Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106

    CAS  PubMed  Google Scholar 

  • Tamada M, Nagano O, Tateyama S, Ohmura M, Yae T et al (2012) Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 72:1438–1448

    CAS  PubMed  Google Scholar 

  • Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y et al (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15:4234–4241

    CAS  PubMed  Google Scholar 

  • Trerotola M, Rathore S, Goel HL, Li J, Alberti S et al (2010) CD133, Trop-2 and alpha2beta1 integrin surface receptors as markers of putative human prostate cancer stem cells. Am J Transl Res 2:135–144

    CAS  PubMed  Google Scholar 

  • van der Pluijm G (2011) Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone 48:37–43

    PubMed  Google Scholar 

  • Verheij M, Vens C, van Triest B (2010) Novel therapeutics in combination with radiotherapy to improve cancer treatment: rationale, mechanisms of action and clinical perspective. Drug Resist Updat 13:29–43

    CAS  PubMed  Google Scholar 

  • Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    CAS  PubMed  Google Scholar 

  • Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K et al (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci USA 108:16062–16067

    CAS  PubMed  Google Scholar 

  • Waltering KK, Urbanucci A, Visakorpi T (2012) Androgen receptor (AR) aberrations in castration-­resistant prostate cancer. Mol Cell Endocrinol 360(1–2):38–43

    CAS  PubMed  Google Scholar 

  • Wang Z, Li Y, Banerjee S, Kong D, Ahmad A et al (2010) Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem 109:726–736

    CAS  PubMed  Google Scholar 

  • Wicha MS (2008) Cancer stem cell heterogeneity in hereditary breast cancer. Breast Cancer Res 10:105

    PubMed  Google Scholar 

  • Wright NA (2012) Stem cell identification-in vivo lineage analysis versus in vitro isolation and clonal expansion. J Pathol 227:255–266

    CAS  PubMed  Google Scholar 

  • Xiao W, Graham PH, Power CA, Hao J, Kearsley JH et al (2012) CD44 is a biomarker associated with human prostate cancer radiation sensitivity. Clin Exp Metastasis 29:1–9

    PubMed  Google Scholar 

  • Yan M, Callahan CA, Beyer JC, Allamneni KP, Zhang G et al (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463:E6–7

    CAS  PubMed  Google Scholar 

  • Zelivianski S, Verni M, Moore C, Kondrikov D, Taylor R et al (2001) Multipathways for transdifferentiation of human prostate cancer cells into neuroendocrine-like phenotype. Biochim Biophys Acta 1539:28–43

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our research in prostate cancer stem cells was supported by programme and project grants from Yorkshire Cancer Research (Registered Charity 516898).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman J. Maitland Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frame, F.M., Maitland, N.J. (2013). Cancer Stem Cells Provide New Insights into the Therapeutic Responses of Human Prostate Cancer. In: Cramer, S. (eds) Stem Cells and Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6498-3_4

Download citation

Publish with us

Policies and ethics