Isolation and Characterization of Prostate Stem Cells

Chapter

Abstract

Based on the unique capacity of the rodent prostate to undergo seemingly endless rounds of androgen cycling in response to castration and androgen add-back, the prostate has been proposed to contain long-term self-renewing stem cells. However the prospective isolation and characterization of stem-like cells from rodent and human prostate tissue has only been described over the last 2 decades. Several models of epithelial homeostasis in the adult prostate have been proposed based on either the presence of a multipotent tissue stem cell that differentiates through a series of intermediate developmental stages or the coexistence of multiple unipotent lineage-restricted stem cells. The isolation of cells with stem and progenitor activity is an important first step to delineate the epithelial hierarchy of the prostate. In addition, isolation of stem cells allows characterization of their functional capacities and the molecular programs regulating their activity. These studies will enable detection or targeting of stem and progenitor cells during various stages of neoplastic transformation and tumor progression, including the lethal phase of the disease, castration-resistant prostate cancer.

Keywords

Codon Recombination Aldehyde Luminal Androgen 

References

  1. Abate-Shen C, Shen MM (2000) Molecular genetics of prostate cancer. Genes Dev 14:2410–2434PubMedCrossRefGoogle Scholar
  2. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ et al (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465:798–802PubMedCrossRefGoogle Scholar
  3. Aumuller G, Leonhardt M, Janssen M, Konrad L, Bjartell A, Abrahamsson PA (1999) Neurogenic origin of human prostate endocrine cells. Urology 53:1041–1048PubMedCrossRefGoogle Scholar
  4. Barclay WW, Axanova LS, Chen W, Romero L, Maund SL, Soker S, Lees CJ, Cramer SD (2008) Characterization of adult prostatic progenitor/stem cells exhibiting self-renewal and multilineage differentiation. Stem Cells 26:600–610PubMedCrossRefGoogle Scholar
  5. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007PubMedCrossRefGoogle Scholar
  6. Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 84:2302–2306PubMedCrossRefGoogle Scholar
  7. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234PubMedCrossRefGoogle Scholar
  8. Berardi AC, Wang A, Levine JD, Lopez P, Scadden DT (1995) Functional isolation and characterization of human hematopoietic stem cells. Science (New York, NY) 267:104–108CrossRefGoogle Scholar
  9. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217PubMedCrossRefGoogle Scholar
  10. Blum R, Gupta R, Burger PE, Ontiveros CS, Salm SN, Xiong X, Kamb A, Wesche H, Marshall L, Cutler G et al (2009) Molecular signatures of prostate stem cells reveal novel signaling pathways and provide insights into prostate cancer. PLoS One 4:e5722PubMedCrossRefGoogle Scholar
  11. Bonkhoff H, Wernert N, Dhom G, Remberger K (1991) Basement membranes in fetal, adult ­normal, hyperplastic and neoplastic human prostate. Virchows Archiv 418:375–381PubMedCrossRefGoogle Scholar
  12. Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K, Wilson EL (2005) Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci USA 102:7180–7185PubMedCrossRefGoogle Scholar
  13. Burger PE, Gupta R, Xiong X, Ontiveros CS, Salm SN, Moscatelli D, Wilson EL (2009) High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells 27:2220–2228PubMedCrossRefGoogle Scholar
  14. Choi N, Zhang B, Zhang L, Ittmann M, Xin L (2012) Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21:253–265PubMedCrossRefGoogle Scholar
  15. Collins AT, Habib FK, Maitland NJ, Neal DE (2001) Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 114: 3865–3872PubMedGoogle Scholar
  16. Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209PubMedCrossRefGoogle Scholar
  17. Cunha GR, Lung B (1978) The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool 205:181–193PubMedCrossRefGoogle Scholar
  18. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270PubMedCrossRefGoogle Scholar
  19. Emonard H, Calle A, Grimaud JA, Peyrol S, Castronovo V, Noel A, Lapiere CM, Kleinman HK, Foidart JM (1987a) Interactions between fibroblasts and a reconstituted basement membrane matrix. J Investig Dermatol 89:156–163PubMedCrossRefGoogle Scholar
  20. Emonard H, Grimaud JA, Nusgens B, Lapiere CM, Foidart JM (1987b) Reconstituted basement-­membrane matrix modulates fibroblast activities in vitro. J Cell Physiol 133:95–102PubMedCrossRefGoogle Scholar
  21. English HF, Santen RJ, Isaacs JT (1987) Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11:229–242PubMedCrossRefGoogle Scholar
  22. Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34–45PubMedCrossRefGoogle Scholar
  23. Fong CJ, Sherwood ER, Sutkowski DM, Abu-Jawdeh GM, Yokoo H, Bauer KD, Kozlowski JM, Lee C (1991) Reconstituted basement membrane promotes morphological and functional differentiation of primary human prostatic epithelial cells. Prostate 19:221–235PubMedCrossRefGoogle Scholar
  24. Fong D, Moser P, Krammel C, Gostner JM, Margreiter R, Mitterer M, Gastl G, Spizzo G (2008a) High expression of TROP2 correlates with poor prognosis in pancreatic cancer. Br J Cancer 99:1290–1295PubMedCrossRefGoogle Scholar
  25. Fong D, Spizzo G, Gostner JM, Gastl G, Moser P, Krammel C, Gerhard S, Rasse M, Laimer K (2008b) TROP2: a novel prognostic marker in squamous cell carcinoma of the oral cavity. Mod Pathol 21:186–191PubMedGoogle Scholar
  26. Fuchs E, Horsley V (2011) Ferreting out stem cells from their niches. Nat Cell Biol 13:513–518PubMedCrossRefGoogle Scholar
  27. Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS, Hahm SA, Haider M, Head CS, Reiter RE et al (2009) Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. The ProstateGoogle Scholar
  28. Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS, Hahm SA, Haider M, Head CS, Reiter RE et al (2010) Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. The Prostate 70: 491–501Google Scholar
  29. Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON (2008) Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci USA 105:20882–20887PubMedCrossRefGoogle Scholar
  30. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010) Identification of a cell of origin for human prostate cancer. Science (New York, NY) 329:568–571CrossRefGoogle Scholar
  31. Goldstein AS, Drake JM, Burnes DL, Finley DS, Zhang H, Reiter RE, Huang J, Witte ON (2011) Purification and direct transformation of epithelial progenitor cells from primary human prostate. Nat Protoc 6:656–667PubMedCrossRefGoogle Scholar
  32. Hudson DL (2004) Epithelial stem cells in human prostate growth and disease. Prostate Cancer Prostatic Dis 7:188–194PubMedCrossRefGoogle Scholar
  33. Hudson DL, O’Hare M, Watt FM, Masters JR (2000) Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Invest 80:1243–1250PubMedCrossRefGoogle Scholar
  34. Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 89:1502–1506PubMedCrossRefGoogle Scholar
  35. Isaacs JT (1985) Control of cell proliferation and cell death in the normal and neoplastic prostate: a stem cell model. In: Rodgers CH et al (eds) Benign prostatic hyperplasia. Department of Health and Human Services, Washington, DC, pp 85–94Google Scholar
  36. Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgard R (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40:1291–1299PubMedCrossRefGoogle Scholar
  37. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRefGoogle Scholar
  38. Kobayashi H, Minami Y, Anami Y, Kondou Y, Iijima T, Kano J, Morishita Y, Tsuta K, Hayashi S, Noguchi M (2010) Expression of the GA733 gene family and its relationship to prognosis in pulmonary adenocarcinoma. Virchows Arch 457:69–76PubMedCrossRefGoogle Scholar
  39. Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 89:6232–6236PubMedCrossRefGoogle Scholar
  40. Lavker RM, Sun TT (2000) Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci USA 97:13473–13475PubMedCrossRefGoogle Scholar
  41. Lawson DA, Witte ON (2007) Stem cells in prostate cancer initiation and progression. J Clin Invest 117:2044–2050PubMedCrossRefGoogle Scholar
  42. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON (2007) Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 104:181–186PubMedCrossRefGoogle Scholar
  43. Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci USA 107(6): 2610–2615PubMedCrossRefGoogle Scholar
  44. Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single adult stem cell. Nature 456:804–808PubMedCrossRefGoogle Scholar
  45. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913PubMedCrossRefGoogle Scholar
  46. Litvinov IV, Vander Griend DJ, Xu Y, Antony L, Dalrymple SL, Isaacs JT (2006) Low-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells. Cancer Res 66:8598–8607PubMedCrossRefGoogle Scholar
  47. Lukacs RU, Lawson DA, Xin L, Zong Y, Garraway I, Goldstein AS, Memarzadeh S, Witte ON (2008) Epithelial stem cells of the prostate and their role in cancer progression. Cold Spring Harb Symp Quant Biol 73:491–502PubMedCrossRefGoogle Scholar
  48. Lukacs RU, Goldstein AS, Lawson DA, Cheng D, Witte ON (2010a) Isolation, cultivation and characterization of adult murine prostate stem cells. Nat Protoc 5:702–713PubMedCrossRefGoogle Scholar
  49. Lukacs RU, Memarzadeh S, Wu H, Witte ON (2010b) Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 7:682–693PubMedCrossRefGoogle Scholar
  50. Manova K, Nocka K, Besmer P, Bachvarova RF (1990) Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110:1057–1069PubMedGoogle Scholar
  51. Muhlmann G, Spizzo G, Gostner J, Zitt M, Maier H, Moser P, Gastl G, Muller HM, Margreiter R, Ofner D et al (2009) TROP2 expression as prognostic marker for gastric carcinoma. J Clin Pathol 62:152–158PubMedCrossRefGoogle Scholar
  52. Mulholland DJ, Xin L, Morim A, Lawson D, Witte O, Wu H (2009) Lin-Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res 69:8555–8562PubMedCrossRefGoogle Scholar
  53. Nguyen DT, Dey A, Lang RJ, Ventura S, Exintaris B (2011) Contractility and pacemaker cells in the prostate gland. J Urol 185:347–351PubMedCrossRefGoogle Scholar
  54. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science (New York, NY) 333:218–221CrossRefGoogle Scholar
  55. Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81:2844–2853PubMedGoogle Scholar
  56. Ohmachi T, Tanaka F, Mimori K, Inoue H, Yanaga K, Mori M (2006) Clinical significance of TROP2 expression in colorectal cancer. Clin Cancer Res 12:3057–3063PubMedCrossRefGoogle Scholar
  57. Okada H, Tsubura A, Okamura A, Senzaki H, Naka Y, Komatz Y, Morii S (1992) Keratin profiles in normal/hyperplastic prostates and prostate carcinoma. Virchows Archiv 421:157–161PubMedCrossRefGoogle Scholar
  58. Ontiveros CS, Salm SN, Wilson EL (2008) Axin2 expression identifies progenitor cells in the murine prostate. Prostate 68:1263–1272PubMedCrossRefGoogle Scholar
  59. Peng W, Bao Y, Sawicki JA (2011) Epithelial cell-targeted transgene expression enables isolation of cyan fluorescent protein (CFP)-expressing prostate stem/progenitor cells. Transgenic Res 20:1073–1086PubMedCrossRefGoogle Scholar
  60. Ploemacher RE, Brons RH (1989) Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: evidence for a pre-CFU-S cell. Exp Hematol 17:263–266PubMedGoogle Scholar
  61. Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13PubMedCrossRefGoogle Scholar
  62. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:3539–3545PubMedCrossRefGoogle Scholar
  63. Robinson EJ, Neal DE, Collins AT (1998) Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 37:149–160PubMedCrossRefGoogle Scholar
  64. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 106:12771–12775PubMedCrossRefGoogle Scholar
  65. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88PubMedCrossRefGoogle Scholar
  66. Shafik A, Shafik I, el-Sibai O (2005) Identification of c-kit-positive cells in the human prostate: the interstitial cells of Cajal. Arch Androl 51:345–351PubMedCrossRefGoogle Scholar
  67. Shahi P, Seethammagari MR, Valdez JM, Xin L, Spencer DM (2011) Wnt and Notch pathways have interrelated opposing roles on prostate progenitor cell proliferation and differentiation. Stem Cells (Dayton, Ohio) 29:678–688CrossRefGoogle Scholar
  68. Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24:1967–2000PubMedCrossRefGoogle Scholar
  69. Shen MM, Wang X, Economides KD, Walker D, Abate-Shen C (2008) Progenitor cells for the prostate epithelium: roles in development, regeneration, and cancer. Cold Spring Harb Symp Quant Biol 73:529–538PubMedCrossRefGoogle Scholar
  70. Shi X, Gipp J, Bushman W (2007) Anchorage-independent culture maintains prostate stem cells. Dev Biol 312:396–406PubMedCrossRefGoogle Scholar
  71. Slack JM (2000) Stem cells in epithelial tissues. Science (New York, NY) 287:1431–1433CrossRefGoogle Scholar
  72. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71PubMedCrossRefGoogle Scholar
  73. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science (New York, NY) 241:58–62CrossRefGoogle Scholar
  74. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997PubMedGoogle Scholar
  75. Taylor RA, Toivanen R, Frydenberg M, Pedersen J, Harewood L, Australian Prostate Cancer B, Collins AT, Maitland NJ, Risbridger GP (2012) Human epithelial basal cells are cells of origin of prostate cancer, independent of CD133 status. Stem Cells (Dayton, Ohio) 30:1087–1096CrossRefGoogle Scholar
  76. Thorgeirsson SS (1996) Hepatic stem cells in liver regeneration. FASEB J 10:1249–1256PubMedGoogle Scholar
  77. Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D, Shapiro E, Lepor H, Sun TT, Wilson EL (2002) Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 157:1257–1265PubMedCrossRefGoogle Scholar
  78. Uzgare AR, Xu Y, Isaacs JT (2004) In vitro culturing and characteristics of transit amplifying epithelial cells from human prostate tissue. J Cell Biochem 91:196–205PubMedCrossRefGoogle Scholar
  79. Van der Aa F, Roskams T, Blyweert W, De Ridder D (2003) Interstitial cells in the human prostate: a new therapeutic target? Prostate 56:250–255PubMedCrossRefGoogle Scholar
  80. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479:189–193PubMedCrossRefGoogle Scholar
  81. van Leenders G, Dijkman H, Hulsbergen-van de Kaa C, Ruiter D, Schalken J (2000) Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab Invest 80:1251–1258PubMedCrossRefGoogle Scholar
  82. van Leenders GJ, Gage WR, Hicks JL, van Balken B, Aalders TW, Schalken JA, De Marzo AM (2003) Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am J Pathol 162:1529–1537PubMedCrossRefGoogle Scholar
  83. Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H (2006) Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci USA 103:1480–1485PubMedCrossRefGoogle Scholar
  84. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500PubMedCrossRefGoogle Scholar
  85. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56PubMedCrossRefGoogle Scholar
  86. Xin L, Ide H, Kim Y, Dubey P, Witte ON (2003) In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci USA 100(Suppl 1):11896–11903PubMedCrossRefGoogle Scholar
  87. Xin L, Lawson DA, Witte ON (2005) The Sca-1 cell surface marker enriches for a prostate-­regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 102:6942–6947PubMedCrossRefGoogle Scholar
  88. Xin L, Lukacs RU, Lawson DA, Cheng D, Witte ON (2007) Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells(Dayton, Ohio) 25:2760–2769CrossRefGoogle Scholar
  89. Xue Y, Smedts F, Debruyne FM, de la Rosette JJ, Schalken JA (1998) Identification of intermediate cell types by keratin expression in the developing human prostate. Prostate 34:292–301PubMedCrossRefGoogle Scholar
  90. Zhang L, Valdez JM, Zhang B, Wei L, Chang J, Xin L (2011) ROCK inhibitor Y-27632 suppresses dissociation-induced apoptosis of murine prostate stem/progenitor cells and increases their cloning efficiency. PLoS One 6:e18271PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Urology, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  3. 3.Jonsson Comprehensive Cancer Center, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  4. 4.Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of CaliforniaLos AngelesUSA
  5. 5.Department of Microbiology, Immunology and Molecular GeneticsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations