Advertisement

Oligonucleotides

  • Raymond M. Schiffelers
  • Enrico Mastrobattista
Chapter

Abstract

Oligonucleotides are (short) chains of (chemically modified) ribo- or deoxyribonucleotides. Their ability to bind to chromosomal DNA, mRNA, or non-coding RNA (ncRNA) through Watson-Crick and Hoogsteen base pairing offers possibilities for highly specific intervention in gene transcription, mRNA translation, gene repair, and recombination for therapeutic applications. In theory, a sequence of 15–17 bases occurs only once in the human genome, which would allow specific manipulation of single genes for oligonucleotides in this size range. In addition, therapeutic effects of oligonucleotides can be obtained through sequence-specific binding of transcription factors and intramolecular folding into structures that can bind to and interfere with the function of various biomolecules. Finally, cells display specific receptors for oligonucleotides. These receptors can activate a variety of immunological responses that can be of therapeutic value.

Keywords

Cellular Uptake Antisense Oligonucleotide Peptide Nucleic Acid Hepatitis Delta Virus Nucleic Acid Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alvarez-Erviti L, Seow Y et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345PubMedCrossRefGoogle Scholar
  2. Barchet W, Wimmenauer V et al (2008) Accessing the therapeutic potential of immunostimulatory nucleic acids. Curr Opin Immunol 20(4):389–395PubMedCrossRefGoogle Scholar
  3. Branch AD, Rice CM (2010) Antisense gets a grip on miR-122 in chimpanzees. Sci Transl Med 2(13):13ps1PubMedCrossRefGoogle Scholar
  4. Chan CW, Khachigian LM (2009) DNAzymes and their therapeutic possibilities. Intern Med J 39(4):249–251PubMedCrossRefGoogle Scholar
  5. Chaubey B, Tripathi S et al (2005) A PNA-transportan conjugate targeted to the TAR region of the HIV-1 genome exhibits both antiviral and virucidal properties. Virology 331(2):418–428PubMedCrossRefGoogle Scholar
  6. Chin JY, Schleifman EB et al (2007) Repair and recombination induced by triple helix DNA. Front Biosci 12:4288–4297PubMedCrossRefGoogle Scholar
  7. Dajee M, Muchamuel T et al (2006) Blockade of experimental atopic dermatitis via topical NF-kappaB decoy oligonucleotide. J Invest Dermatol 126(8):1792–1803PubMedCrossRefGoogle Scholar
  8. Davis ME, Zuckerman JE et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070PubMedCrossRefGoogle Scholar
  9. Ellis JC, Brown JW (2009) The RNase P family. RNA Biol 6(4):362–369PubMedCrossRefGoogle Scholar
  10. Fattal E, Barratt G (2009) Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA. Br J Pharmacol 157(2):179–194PubMedCrossRefGoogle Scholar
  11. Feinberg EH, Hunter CP (2003) Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301(5639):1545–1547PubMedCrossRefGoogle Scholar
  12. Fire A, Xu S et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811PubMedCrossRefGoogle Scholar
  13. Gambari R (2004) New trends in the development of transcription factor decoy (TFD) pharmacotherapy. Curr Drug Targets 5(5):419–430PubMedCrossRefGoogle Scholar
  14. Geary RS (2009) Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 5(4):381–391PubMedCrossRefGoogle Scholar
  15. Geary RS, Henry SP et al (2002) Fomivirsen: clinical pharmacology and potential drug interactions. Clin Pharmacokinet 41(4):255–260PubMedCrossRefGoogle Scholar
  16. Gjertsen BT, Bredholt T et al (2007) Bcl-2 antisense in the treatment of human malignancies: a delusion in targeted therapy. Curr Pharm Biotechnol 8(6):373–381PubMedCrossRefGoogle Scholar
  17. Hammond SM, Wood MJ (2011) PRO-051, an antisense oligonucleotide for the potential treatment of Duchenne muscular dystrophy. Curr Opin Mol Ther 12(4):478–486Google Scholar
  18. Henderson CM, Anderson CB et al (2006) Antisense-induced ribosomal frameshifting. Nucleic Acids Res 34(15):4302–4310PubMedCrossRefGoogle Scholar
  19. Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270(8):1628–1644PubMedCrossRefGoogle Scholar
  20. Larsson C, Koch J et al (2004) In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat Methods 1(3):227–232PubMedCrossRefGoogle Scholar
  21. Molitoris BA, Dagher PC et al (2009) SiRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 20(8):1754–1764PubMedCrossRefGoogle Scholar
  22. Murad YM, Clay TM (2009) CpG oligodeoxynucleotides as TLR9 agonists: therapeutic applications in cancer. BioDrugs 23(6):361–375PubMedCrossRefGoogle Scholar
  23. Nakamura A, Takeda S (2009) Exon-skipping therapy for Duchenne muscular dystrophy. Neuropathology 29(4):494–501PubMedCrossRefGoogle Scholar
  24. Ni X, Castanares M et al (2010) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18(27):4206–4214CrossRefGoogle Scholar
  25. Nilsson M, Malmgren H et al (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265(5181):2085–2088PubMedCrossRefGoogle Scholar
  26. Pardridge WM, Boado RJ et al (1995) Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood–brain barrier in vivo. Proc Natl Acad Sci U S A 92(12):5592–5596PubMedCrossRefGoogle Scholar
  27. Rankin AM, Faller DV et al (2008) Telomerase inhibitors and ‘T-oligo’ as cancer therapeutics: contrasting molecular mechanisms of cytotoxicity. Anticancer Drugs 19(4):329–338PubMedCrossRefGoogle Scholar
  28. Rossi JJ (1999) The application of ribozymes to HIV infection. Curr Opin Mol Ther 1(3):316–322PubMedGoogle Scholar
  29. Schiffelers RM, Ansari A et al (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32(19):e149PubMedCrossRefGoogle Scholar
  30. Schubert S, Gul DC et al (2003) RNA cleaving ‘10-23’ DNAzymes with enhanced stability and activity. Nucleic Acids Res 31(20):5982–5992PubMedCrossRefGoogle Scholar
  31. Stein CA, Benimetskaya L et al (2005) Antisense strategies for oncogene inactivation. Semin Oncol 32(6):563–572PubMedCrossRefGoogle Scholar
  32. Stephenson ML, Zamecnik PC (1978) Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A 75(1):285–288PubMedCrossRefGoogle Scholar
  33. Stoltenburg R, Reinemann C et al (2007) SELEX–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403PubMedCrossRefGoogle Scholar
  34. Tiemann K, Rossi JJ (2009) RNAi-based therapeutics-current status, challenges and prospects. EMBO Mol Med 1(3):142–151PubMedCrossRefGoogle Scholar
  35. Underhill DM (2003) Toll-like receptors: networking for success. Eur J Immunol 33(7):1767–1775PubMedCrossRefGoogle Scholar
  36. Vickers KC, Palmisano BT et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433PubMedCrossRefGoogle Scholar
  37. Vinores SA (2006) Pegaptanib in the treatment of wet, age-related macular degeneration. Int J Nanomedicine 1(3):263–268PubMedGoogle Scholar
  38. Wacheck V, Zangemeister-Wittke U (2006) Antisense molecules for targeted cancer therapy. Crit Rev Oncol Hematol 59(1):65–73PubMedCrossRefGoogle Scholar
  39. Weigand JE, Suess B (2009) Aptamers and riboswitches: perspectives in biotechnology. Appl Microbiol Biotechnol 85(2):229–236PubMedCrossRefGoogle Scholar
  40. Xi S, Gooding WE et al (2005) In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. Oncogene 24(6):970–979PubMedCrossRefGoogle Scholar
  41. Zimmermann GR, Wick CL et al (2000) Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA 6(5):659–667PubMedCrossRefGoogle Scholar

Further Reading

  1. Bennet CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Ann Rev Pharmacol Toxiol 50:259–293CrossRefGoogle Scholar
  2. Cho-Chung YS, Gewirtz AM, Stein CA (2005) Therapeutic oligonucleotides: transcriptional and translational strategies for silencing gene expression. Annals of the New York Academy of Sciences New York Academy of Sciences, New YorkGoogle Scholar
  3. Kalota A, Dondeti VR, Gewirtz AM (2006) Progress in the development of nucleic acid therapeutics. Handb Exp Pharmacol 173:173–196PubMedCrossRefGoogle Scholar
  4. Klussmann S (2006) The aptamer handbook: functional oligonucleotides and their applications. Wiley-VCH Verlag, WeinheimCrossRefGoogle Scholar
  5. Phillips MI (2004) Antisense therapeutics. Methods in molecular medicine. Humana Press, TotowaCrossRefGoogle Scholar
  6. Raz E (2000) Immunostimulatory DNA sequences. Springer, BerlinGoogle Scholar
  7. Xie FY, Woodle MC, Lu PY (2006) Harnessing in vivo siRNA delivery for drug discovery and therapeutic development. Drug Discov Today 11(1–2):67–73PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Raymond M. Schiffelers
    • 1
  • Enrico Mastrobattista
    • 2
  1. 1.Laboratory Clinical Chemistry & HaematologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Department of Pharmaceutics, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations